Molecular Phylogenetics and Evolution 100 (2016) 183-198

Contents lists available at ScienceDirect

Molecular Phylogenetics and Evolution

journal homepage: www.elsevier.com/locate/ympev

Phylogenetic systematics and a revised generic classification of anthidiine bees (Hymenoptera: Megachilidae)

Jessica R. Litman^{a,*}, Terry Griswold^b, Bryan N. Danforth^c

^a Natural History Museum of Neuchâtel, Terreaux 14, 2000 Neuchâtel, Switzerland

^b USDA-ARS, Bee Biology and Systematics Laboratory, Utah State University, Logan, UT 84322, United States

^c Department of Entomology, Cornell University, Ithaca, NY 14853, United States

ARTICLE INFO

Article history: Received 3 August 2015 Revised 28 February 2016 Accepted 14 March 2016 Available online 14 March 2016

Keywords: Megachilidae Anthidiini Phylogenetics Integrative systematics Nesting behavior

ABSTRACT

The bee tribe Anthidiini (Hymenoptera: Megachilidae) is a large, cosmopolitan group of solitary bees that exhibit intriguing nesting behavior. We present the first molecular-based phylogenetic analysis of relationships within Anthidiini using model-based methods and a large, multi-locus dataset (five nuclear genes, 5081 base pairs), as well as a combined analysis using our molecular dataset in conjunction with a previously published morphological matrix. We discuss the evolution of nesting behavior in Anthidiini and the relationship between nesting material and female mandibular morphology. Following an examination of the morphological characters historically used to recognize anthidiine genera, we recommend the use of a molecular-based phylogenetic backbone to define taxonomic groups prior to the assignment of diagnostic morphological characters for these groups. Finally, our results reveal the paraphyly of numerous genera and have significant consequences for anthidiine classification. In order to promote a classification system based on stable, monophyletic clades, we hereby make the following changes to Michener's (2007) classification: The subgenera Afranthidium (Zosteranthidium) Michener and Griswold, 1994, Afranthidium (Branthidium) Pasteels, 1969 and Afranthidium (Immanthidium) Pasteels, 1969 are moved into the genus Pseudoanthidium, thus forming the new combinations Pseudoanthidium (Zosteranthidium), Pseudoanthidium (Branthidium), and Pseudoanthidium (Immanthidium). The genus Neanthidium Pasteels, 1969 is also moved into the genus Pseudoanthidium, thus forming the new combination Pseudoanthidium (Neanthidium).

Based on morphological characters shared with our new definition of the genus *Pseudoanthidium*, the subgenus *Afranthidium* (*Mesanthidiellum*) Pasteels, 1969 and the genus *Gnathanthidium* Pasteels, 1969 are also moved into the genus *Pseudoanthidium*, thus forming the new combinations *Pseudoanthidium* (*Mesanthidiellum*) and *Pseudoanthidium* (*Gnathanthidium*).

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The megachilid tribe Anthidiini (Apoidea, Megachilidae) includes approximately 870 described species (Ascher and Pickering, 2015) and is widely distributed on all continents except Australia, where only one genus is native, and in the Caribbean and Antarctica, where it is absent (Michener, 1979). They are broad, robust bees and are usually easily distinguished from other megachilids by their dark cuticula and striking yellow, white, or red integumental markings (Michener, 2007).

Anthidiine bees exhibit fascinating nesting behavior. Some build their nests in preexisting cavities, such as pithy plant stems,

* Corresponding author. E-mail addresses: jessica.litman@unine.ch (J.R. Litman), terry.griswold@ars.usda. gov (T. Griswold), bnd1@cornell.edu (B.N. Danforth). empty snail shells, or abandoned insect galleries (Müller et al., 1997; Xambeu, 1896; Ferton, 1911; Fabre, 1891; Grandi, 1934; Pasteels, 1977; Claude-Joseph, 1926); others build exposed nests on the surfaces of rocks, trees, or other structures (Gess and Gess, 2007; Ferton, 1901; Pasteels, 1977; Westrich, 1989; Muller, 1931; Müller et al., 1997); several lineages excavate their own burrows in soil (O'Brien, 2007; Evans, 1993; Micheli, 1935; Maneval, 1936; Pasteels, 1977; Müller et al., 1997). The French naturalist, Jean-Henri Fabre, described the "resinous putty" and "felted cotton" typical of anthidiine nests (Fabre, 1914). Fabre's descriptions highlight an intriguing aspect of their nesting biology: unlike members of the megachilid tribes Osmiini and Megachilini, whose primary nest-building materials may include leaf pieces, mud, pebbles, resin, flower petals, and masticated leaf pulp, the preferred *materia prima* of Anthidiini is almost exclusively limited

to one of two principal sources: plant resins and plant fibers. These materials may be supplemented with pebbles, leaf strips, grains of sand, animal fur, snail shell fragments and bits of bark or other debris (Michener, 2007).

Fabre was among the first to classify Anthidiini into two broad groups based on primary nest-building material (Fabre, 1891). He recognized les résiniers, those anthidiines that use plant resins to build their nest cells, as a separate group from les cotonniers, or those anthidiines that use plant fibers to build their nest cells. Michener's (2007) suprageneric classification also divided Anthidiini into two groups: Series A includes 23 non-parasitic genera in which females have three or four rounded or blunt mandibular teeth separated by shallow concavities, while Series B includes eight genera with five or more sharp teeth separated by acute V-shaped notches. While Michener's groups are based on mandibular dentition and Fabre's groups are based on nesting behavior. Michener's Series A coincides with les résiniers of Fabre and his Series B coincides with les cotonniers of Fabre, implying a relationship between female mandibular dentition and choice of nesting material (Perez, 1879, 1889; Pasteels, 1977).

The conspicuous morphological diversity of anthidiine bees has inspired multiple classification systems, with some authors preferring to divide the tribe into many small genera and other authors preferring fewer, much larger, genera. Pasteels' (1969) classification of Old World Anthidiini includes 47 genera and Urban and Moure's (2012) classification of neotropical Anthidiini includes 39 genera. While the genera presented by Michener (2007) are more inclusive than those of either Pasteels (1969) or Urban and Moure (2012), he also favors a system of multiple, small genera: his 2007 classification divides worldwide Anthidiini into 37 genera.

In contrast, Warncke's (1980) classification of western Palaearctic anthidiines recognizes only two genera: *Anthidium*, which encompasses all non-parasitic anthidiines, and *Stelis*, which includes the parasitic anthidiines (for comparison, Michener's (2007) classification recognizes nine non-parasitic western Palaearctic genera). Warncke (1980) justified his classification, noting that "*Anthidium* differs in many groups but no group has developed a new characteristic. It seems not right to split it [the genus *Anthidium*] in many genera (for example Pasteels, 1969)." Michener (2007) objects, arguing that Warncke's system groups together very different forms into what is likely a paraphyletic group.

Despite the fascinating natural history of Anthidiini and the general lack of consensus regarding the assignment of anthidiine species to genera, there has been no treatment of the phylogenetic relationships among worldwide lineages of anthidiine bees and the evolutionary history of the tribe remains largely unknown. The only existing cladistic analysis of Anthidiini was presented by Müller (1996); it included only non-cleptoparasitic western Palaearctic anthidiines, however, making it difficult to assess relationships on a world-wide basis. In this paper we reconstruct the evolutionary history of the tribe Anthidiini using modelbased methods and a large, multi-locus dataset, as well as a combined dataset consisting of both molecular and morphological characters. We offer the first molecular-based phylogenetic hypothesis of relationships within the tribe and discuss the impact of our results on anthidiine classification. We also examine the utility of morphological characters historically used to recognize taxa. Finally, we propose a generic-level revision of Anthidiini.

2. Materials and methods

2.1. Taxon sampling

For molecular analyses, we sampled extensively within the tribe Anthidiini, choosing 123 representative species from 28

genera (Table 1). We chose 38 outgroup taxa representing all other megachilid tribes, as well as all other families of bees. Collection localities and DNA voucher numbers are listed in Table 1. Voucher specimens are deposited in the Cornell University Insect Collection, in the collection at the USDA-ARS Bee Biology and Systematics Laboratory at Utah State University, and in the Litman-Praz insect collection in Neuchâtel, Switzerland.

For combined molecular-morphological analyses, we used our molecular dataset together with a subset of the taxa present in the megachilid morphological matrix published by Gonzalez et al. (2012). We used all of the anthidiines included by Gonzalez et al. (2012) (27 genera in total), as well as 26 of their outgroup genera that overlapped with the outgroup taxa present in our molecular dataset. A total of 53 taxa were thus represented by morphological data in our combined analyses. In cases where a subgenus in the morphological matrix was represented by a different species than the species for the same subgenus in the molecular matrix, we created a chimeric taxon labeled to subgenus. Use of the morphological dataset allowed us to include four anthidiine genera for which fresh specimens for molecular analyses were unavailable: Gnathanthidium, Anthidioma, Indanthidium and Xenostelis. The ingroup for our combined analysis thus includes 32 genera, or 89% of generic-level diversity for the tribe.

2.2. Dataset and alignment

We sequenced a total of 5081 base pairs from four nuclear protein-coding genes (CAD, 879 base pairs; NAK, 1488 base pairs; LW-rhodopsin, 672 base pairs; and EF1-alpha, F2 copy, 750 base pairs) and one nuclear ribosomal gene (28S, 1292 base pairs). All DNA extraction and sequencing protocols follow Danforth et al. (1999). PCR primers and conditions for CAD, NAK, LW-rhodopsin, and 28S were identical to those listed in Table S3 from Litman et al. (2011). For EF1-alpha, we used the forward primer HaF2for1 (5' GGG YAA AGG WTC CTT CAA RTA TGC 3') together with an anthidiine-specific reverse primer, F2RevAnth (5' AAT CAG CAG CRC CYT TCG GTG G 3'). The PCR conditions for this set of primers were 45 s@94 °C/45 s@58 °C/1 m@72 °C, run for 36 cycles; the PCR runs were preceded by 5 min at 94 °C and followed by 7 min at 72 °C.

Sequencing was performed at the Cornell University Life Sciences Core Laboratories Center using an Applied Biosystems 3730xl DNA analyzer and at the University of Neuchâtel using an Applied Biosystems 3500 DNA analyzer. Sequences were edited using Sequencher version 5.3 sequence analysis software (Gene Codes Corporation, 2015). Alignments were performed using MAFFT (Katoh and Standley, 2013) and then adjusted by eye in MacClade (Maddison and Maddison, 2005); all introns were removed from protein-coding genes. The ribosomal gene 28S was aligned by secondary structure following Kjer (1995), using the 28S secondary structure model of *Apis mellifera* (Gillespie et al., 2006); unalignable regions were removed. New sequence data are archived in GenBank and all DNA accession numbers are listed in Table 2.

2.3. Test for nucleotide compositional bias

Nucleotide compositional bias has been cited as a source of error in phylogenetic reconstruction (Ho and Jermiin, 2004; Jermiin et al., 2004; Praz and Packer, 2014), namely by causing lineages sharing a similar bias to cluster together due to convergent evolution rather than shared ancestry (Sheffield, 2013). RY recoding (in which each nucleotide is recoded simply as either as a purine or pyrimidine) has been proposed as a means of eliminating this bias, namely by homogenizing nucleotide frequencies among taxa (Woese et al., 1991). In order to test for nucleotide

Table 1

Taxon list, DNA voucher numbers, collection localities and dates for specimens used in this study. Voucher numbers marked with an endash ("-") indicate taxa for which sequences were downloaded from Genbank. For Genbank accession numbers, see Table 2. Taxa are labeled following our revised classification.

Taxon	Voucher number	Collection locality
Afranthidium (Afranthidium) karooense	1588	SOUTH AFRICA: NCP, 42 km S Eksteenfontein, 9.x.2008
Afranthidium (Capanthidium) capicola	1594	SOUTH AFRICA: WCP, Clanwilliam, 19.x.2008
Afranthidium (Capanthidium) rubellulum	1610	SOUTH AFRICA: NCP, 42 km S Eeksteenfontein, 9.x.2008
Afranthidium (Capanthidium) poecilodontum	1612	SOUTH AFRICA: NCP, 10 km E Nabapeep, 15.x.2008
Afranthidium (Capanthidium) schulthessi	cp183	MOROCCO: Aksri, Paradise Valley, 15.iv.2009
Afranthidium (Domanthdium) abdominale	1644	SOUTH AFRICA: ECP, 42 km NW Cradock, 02.iii.2010
Afranthidium (Mesanthidium) alternans	cp182	MOROCCO: Guelmim, 17.iv.2009
Afranthidium (Mesanthidium) carduele	1596	GREECE: Lesvos, vic Pyrra, Kalloni Bay, 16.vi.2007
Afranthidium (Nigranthidium) sp. nov. 1	1611	SOUTH AFRICA: NCP, 10 km E Nabapeep, 15.x.2008
Afranthidium (Nigranthidium) sp.	1452	SOUTH AFRICA: NCP, Nabapeep, 15.x.2008
Afranthidium (Oranthidium) folliculosum	1640	SOUTH AFRICA: NCP, 12 km N Kuruman, 09.iii. 2010
Afranthidium sp. nov.	cp179	SOUTH AFRICA: Barcode 4484 A03
Afrosiens sp.	1045	SOUTH AFRICA: NCP, I KIII S Callipbell, 07.111.2010
Anthidiellum (Anthidiellum) stilgatum	1297	ITALI. Poggio Picelize, 01.VII.2011 USA: NV Clark Co. F. CC Spring, 10.vii 2004
Anthidiellum (Chloranthidiellum) sp. pov. 1	1608	TANZANIA: Dodoma Region 62 km F Dodoma 3 i 2003
Anthidiellum (Pycnanthidium) absonulum	1635	SOUTH AFRICA: KZN Kulene Experimental Farm 09-12 iii 2002
Anthidiellum (Pycnanthidium) absolutum	1647	SOUTH AFRICA: FCP W Bavianskloof P P 27 ii 2010
Anthidium (Anthidium) cockerelli	1385	USA: NV. Clark Co., Yucca Gan. 17.v.2004
Anthidium (Anthidium) chilense	1625	CHILE: Coquimbo Province, 13 km E Vicuna, Rt.41, 21.x.2009
Anthidium (Anthidium) colliguayanum	1624	CHILE: Coquimbo Province,13 km E Vicuna, Rt.41, 21.x.2009
Anthidium (Anthidium) deceptum	1642	PERU: Ica, E of Nazca, 15 km marker on Hwy 30A, 02.iv.2010
Anthidium (Anthidium) illustre	1384	USA: NV, Clark Co., Lovell Cyn.,16.vi.2004
Anthidium (Anthidium) porterae	645	USA: NM, Hidalgo Co., 20 mi S Animas, 17.ix.1999
Anthidium (Anthidium) punctatum	1554	SWITZERLAND: Weiach, 29.vi.2004
Anthidium (Gulanthidium) sp.	1637	IRAN: 13 km E Kalameh, road Busher-Shiraz, 03.vi.2009
Anthidium (Proanthidium) oblongatum	505	USA: NY, Tompkins Co., Ithaca, 01.vii.1999
Anthidium (Severanthidium) cordiforme	1628	SOUTH AFRICA: Limpopo Prov., 26 km W Messina, 18.iii.2002
Anthidium (Turkanthidium) gratum	1598	UZBEKISTAN: Bukara Prov., 40 km NE Gazli, 31.v. 2008
Anthiaium (Turkanthiaium) unicum	1597	UZBERISTAN: QARSCHI PTOV., 25 KM SE MUDORAK, UZ.VI.2008
Anthodiocles (Anthodiocles) mupirensis	1519	BOLIVIA: La Paz, Fuente VIIIa, FLIII.2011 POLIVIA: La Paz, 5 km W/ Mapiri, 16, 18 iii 2001
Anthoulocles (Bolhanthillann) lauroi	1599	DULIVIA. La Paz, 5 kili W Wapili, 10-10.111.2001 ARCENTINIA: Salta Prov. Caravete 10 km S 24 x = 13 vi 2003
Aztecanthidium tenochtitlanicum	cn173	MEXICO: Jalisco, Chamela (Biol. Stat.). 20 vii 1989
Bathanthidium (Manthidium) binghami	1536	THAILAND: Petchabun Nam NP. 1–8.iii.2007
Benanthis madagascariensis	1518	MADAGASCAR: Tulear. Androv. x.2002
Cyphanthidium intermedium	cp174	SOUTH AFRICA: NCP, 3.2 km S Augrabies, 28.i.2009
Dianthidium (Adanthidium) arizonicum	1386	USA: UT, Garfield Co., Escalante, 27.vi.2002
Dianthidium (Dianthidium) subparvum	1267	USA: UT, Cache Co., Blacksmith Fork Cyn., Left Hand Fork, 05.viii.2003
Dianthidium (Mecanthidium) macrurum	1648	MEXICO: Sonora, 40 km E Alamos, Rancho Palo Injerto, 30.ix.2006
Duckeanthidium thielei	1607	COSTA RICA: Heredia, La Selva Biol. Sta., Puerto Viejo de Sarapiqui, 5.i.1999
Eoanthidium (Clistanthidium) turnericum	1589	SOUTH AFRICA: NCP, Eksteenfontein, 9.x.2008
Eoanthidium (Eoanthidium) clypeare	1436	JORDAN: Wadi Shuyab, vi.2007
Epanthidium (Epanthidium) bicoloratum	1441	ARGENTINA: Catamarca, Trampasacha, 25.x-12.xi.2003
Euaspis abdominalis	1627	SOUTH AFRICA: NP,14 km E VIVO, 17.111.2002
Euaspis polynesia	1426	IHAILAND: Prachup Kiri Khan Province, Pranduri District, 24.vi.2003
Hoploslells Divillala Hypanthidioides (Saranthidium) marginata	1030 CP2	PANAMA: Veraguas Province, Kancheria Island, 18.VII.2009 DARACHAY: Cupico Res. de Recursos Maneiados 24 i 2007
Hypanthidium (Hypanthidium) obscurius	sc171	PARACHAV Paraguarí M Nat Acabay 17 i 2007
Icteranthidium ferrugineum	1432	I/ZBFKISTAN: Karakalnakstan Beruni 25 y 2008
Notanthidium (Allanthidium) rodolphi	1623	CHILE: Coguimbo Province 13 km E Vicuna, Rt.41, 21,x.2009
Notanthidium (Notanthidium) steloides	1542	CHILE: Region Metro, Farellones, 31.xii.2008
Pachyanthidium (Ausanthidium) ausense	1591	SOUTH AFRICA: NCP, Richtersveld National Park, 11.x.2008
Pachyanthidium (Pachyanthidium) bicolor	1606	KENYA: Coast Province, Taita Hill Discovery Centre, 13.xii.2002
Pachyanthidium (Pachyanthidium) cordatum	1631	SOUTH AFRICA: KZN, Ithala Nature Reserve, near Louwsburg, 07.iii.2002
Pachyanthidium (Trichanthidium) benguelense	1434	SOUTH AFRICA: Limpopo Prov., 27 km E Waterpoort, 07.i.2004
Pachyanthidium (Trichanthidium) sp.	1646	SOUTH AFRICA: ECP,W Bavianskloof P.P., 27.ii.2010
Paranthidium (Paranthidium) jugatorium	495	USA: NY, Tompkins Co., Ithaca, 31.vii.1997
Paranthidium (Rapanthidium) sp. nov. 2	1604	MEXICO: Colima, San Antonio, La Becarrera, 10.x.2008
Plesianathidium (Carinanthidium) cariniventre	1595	SOUTH AFRICA: WCP, Hoek se Berg, E Clanwilliam, 20.x.2008
Plesianthidium (Spinanthidiellum) rufocaudatum	1609	SOUTH AFRICA: NCP, Nieuwoudtville Wildflower Preserve, 18.x.2008
Plesianthidium (Spinanthidium) calascans	1270	SOUTH AFRICA: WCP, EKSteenhondenii, 09.X.2008
Plesianthidium (Spinanthidium) trachusiforme	1613	SOLITH AFRICA: NCP 10 km F Nahaneen 15 v 2008
Pseudoanthidium (Branthidium) micrurum	1592	SOUTH AFRICA: NCP. Richtersveld National Park 13 x 2008
Pseudoanthidium (Branthidium) minutulum	1593	SOUTH AFRICA: NCP, Richtersveld National Park, 13 x 2008
Pseudoanthidium (Exanthidium) eximium	1600	ITALY: Piemonte, Susa, Salbertrand, 01.vii. 2006
Pseudoanthidium (Immanthidium) immaculatum	1629	SOUTH AFRICA: ECP,74 km E Barkly East, 04.iii.2002
Pseudoanthidium (Immanthidium) junodi	1634	SOUTH AFRICA: ECP,74 km E Barkly East, 04.iii.2002
Pseudoanthidium (Immanthidium) repetitum	1632	SOUTH AFRICA: Limpopo Prov., 30 km W Sibasa, 30.iii.2002
Pseudoanthidium (Immanthidium) sjoestedti	1633	SOUTH AFRICA: FS, Tussen Die Riviere NR, 02.iii.2002
Pseudoanthidium (Micranthidium) sp. nov. 3	1605	TANZANIA: Kilimanjaro Region, 19 km SE Same, 14.i.2003
Pseudoanthidium (Micranthidium) sp.	1641	GHANA: Central UCC, Valco Gardens, 01.xi.2008

Table 1 (continued)

Taxon	Voucher number	Collection locality
Pseudoanthidium (Neanthidium) octodentatum	cp410	MOROCCO: Igerm, 28.iv.2003
Pseudoanthidium (Pseudoanthidium) scapulare	1601	ITALY: Toscana, Massa Maritima, 28.vii.2005
Pseudoanthidium (Royanthidium) melanurum	1438	GREECE: Kalogria, 25.v.2006
Pseudoanthidium (Tuberanthidium) tuberculiferum	cp782	SOUTH AFRICA: NCP, 6 km S Garies, 17.x.2008
Pseudoanthidium (Zosteranthidium) tergofasciatum	cp646	SOUTH AFRICA: WCP, Knersvlakte, 24.viii.2010
Rhodanthidium (Asianthidium) caturigense	cp23	SWITZERLAND: Valais, Euseigne, 25.vi.2011
Rhodanthidium (Meganthidium) superbum	1638	IRAN: Yasuj Region, Margoon Waterfall, 29.v.2009
Khodanthiaium (Khodanthiaium) septemaentatum	1514	GREELE: KNOOOS, STEGNA, US.V.2005
Serapista soni	1430	SOUTH AFRICA: INCP, EKSteenioniteni, 09.x.2008
Stelis (Dolichostelis) laticincta	1389	USA: CA Marinosa Co. Yosemite Valley, 27 vi 2005
Stelis (Dolichostelis) perpulchra	cp123	USA: NV. Clark Co., 1.5 miles NW Corn Creek Sprs., 27.v.2004
Stelis (Dolichostelis) rudbeckiarum	cp122	USA: UT, Garfield Co., Point Lookout, 30.vii.2002
Stelis (Heterostelis) annulata	cp21	ITALY: San Giovanni, 6.vii.2011
Stelis (Heterostelis) anthidioides	cp506	USA: CA, San Benito Co., Pinnacles Natl. Mon., Balconies Cliffs Tr., 22.vi.1998
Stelis (Heterostelis) hurdi	1409	USA: CA, San Benito Co., Pinnacles Natl. Mon., 22.v.1999
Stelis (Heterostelis) ruficornis	cp509	GREECE: Lesvos, 2.2 km SE Mystegna, 6–8.v.2004
Stelis (Malanthidium) sp. 1	cp159	THAILAND: Barcode: 14515-H09
Stelis (Malanthialum) sp. 2 Stalis (Protostalis) signata	cp157	I HAILAND: Barcode: U3/6/-HUI
Stells (Protostells) Signatu Stalis (Stalidomorpha) nasuta	1440	SWITZERLAND: HOILIEIIII, 20.V.2005 CREECE: Atiiki, Athons Brof, 20 km S Athons, 15 vi 2006
Stelis (Stelis) anthoconae	1392	USA: NV Clark Co. St. Thomas Cap. 12 v 2005
Stelis (Stelis) anthracina	1396	USA: NV, Clark Co., St. Thomas Gap, 12,02005
Stelis (Stelis) broemelingi	1391	USA: AZ, Cochise Co., E. Apache, 29.viii.2003
Stelis (Stelis) calliphorina	1403	USA: CA, Mariposa Co., Moraine Dome, 06.vii.2005
Stelis (Stelis) carnifex	1395	USA: CA, Mariposa Co., Eagle Peak, 19.v.2006
Stelis (Stelis) foederalis group sp. B	1398	USA: CA, Maripsoa Co., Ostrander Rocks
Stelis (Stelis) holocyanea	1405	USA: CA, Mariposa Co., Deer Camp, 09.viii.2006
Stelis (Stelis) interrupta	1406	USA: CA, Mariposa Co., Ostrander Rocks, 03.vii.2005
Stelis (Stelis) joanae	1410	USA: NV, Clark Co., St. Thomas Gap, 21.iv.2004
Stelis (Stelis) lamelliterga	1400	USA: UI, Kane Co., Kitchen Corral Spring, 29.v.2002
Stells (Stells) luteralls Stalis (Stalic) linclavi	1401	USA: UT, Washington Co. Kinnock Spring, 11.V.2006
Stelis (Stelis) monticola	1271	USA: CA, Mattera Co., Tosennice National Faix, 11.01.2005
Stelis (Stelis) monteola Stelis (Stelis) occidentalis	1399	USA: CA, Tuolumne Co, White Wolf 08 vii 2006
Stelis (Stelis) paiute	1394	USA: NV. Clark Co., Jean Lake, 14.iv.2004
Stelis (Stelis) palmarum	1393	USA: UT, Kane Co., Paradise Cyn., 26.v.2003
Stelis (Stelis) pavonina	1404	USA: CA, Tuolumne Co., Mammoth Peak, 29.vii.2004
Stelis (Stelis) punctulatissima	1551	SWITZERLAND: Hohtenn, 26.v.2005
Stelis (Stelis) aff. robertsoni	1408	USA: CA, Mariposa Co. Yosemite Valley, 05.vii.2006
Stelis (Stelis) semirubia	1407	USA: CA, Madera Co., Parsons Peak, 02.viii.2004
Stelis (Stelis) subcaerulea	1397	USA: CA, Mariposa Co., Bernice Lake, 09.viii.2006
Stells rozeni Trachusa (Archianthidium) nubeccens	1503	SUUTH AFRICA: NCP, RICHTERSVEID NATIONAL PARK, 12–14.1X.2001
Trachusa (Congotrachusa) schoutedeni	1535	REP CONCO: Dent Pool Iboubikro Lesio Loun 9–15 is 2008
Trachusa (Heteranthidium) cordaticens	cp133	IFWN 07-NM-1403
Trachusa (Heteranthidium) larreae	1142	USA: NV. Clark Co., Las Vegas Sand Dunes, 1.iv.2004
Trachusa (Paraanthidium) interrupta	1602	ITALY: Piemonte, Susa, 2.vii.2006
Trachusa (Trachusa) byssina	1558	SWITZERLAND: Splügen, 23.vii.2005
Trachusa (Trachusomimus) perdita	cp505	USA: CA, San Benito Co., 2.0 km NNW McCabe Canyon, 12.v.2011
Outgroup		
Anthophora montana	633	USA: AZ, Cochise Co., Chiricahua Mts.,14.ix.99
Apis mellifera	-	
Aspidosmia arnoldi	1544	SOUTH AFRICA: NCP, Eksteenfontain, 09.x.2008
Aspidosmia volkmanni	1579	SOUTH AFRICA: NCP, Richtersveld, near De Koci, 09.ix.2007
Ashmeadiella aridula	1270	USA: UT, Garfield Co., Long Canyon, 01.ix.2003
Bombus ardens	-	
Ceratina calcarata	656	USA: NY, TOMPKINS CO., Ithaca, 04.VIII.1999
Chelosioma Jiorisomne Coelievus afra	1553	SWITZERLAND: CHUI SWITZERLAND: Wajach 20 vi 2004
Colletes inaequalis	450	USA· NY Tompkins Co. Ithaca
Ctenonlectra albolimbata	983	SOLITH AFRICA: $K7N$: 20 km NF Hlubluwe 09–12 iii 2002
Dasvnoda argentata	973	FRANCE: Gard. Generac. 22.vi.2002
Dioxys moesta	1546	GREECE: Rhodos, Kamiros, 12.v.2005
Epicharis analis	-	
Fideliopsis major	JL005	SOUTH AFRICA: NCP, Eksteenfontein, 09.x.2008
Haetosmia brachyura	1428	UZBEKISTAN: Karakalpakstan, Beruni, 25.v.2008
Heriades crucifer	1149	USA: AZ, Coshise Co., Chiricahua Mts., 25.viii.2003
Hophitis adunca	1552	ITALY: Aosta, 30.08.2004
Litnurgus chrysurus Macropia puda	1545	ITALY: ADFUZZEN, Massa, 20.VIII.2002
waciopis naaa Megachile hombiformis	1272	USA. NY, KEIISSEIGET CO., KEIISSEIGETVIIIE, IS.VII.2005 SOLITH AFRICA: Limpono Droy, 20 km F Waterpoort, 07 i 2004
Meganomia hinghami	1021	SOUTH AFRICA: Limpopo Prov. 8.5 km N Vivo 07 i 2004
Melitta leporina	-	under a Empopo 1154, 015 km 14 4140, 07.1.2004
Melitturga clavicornis	959	FRANCE: Herault, Causse de la Selle 17.vi.2002

Table 1 (continued)

Taxon	Voucher number	Collection locality
Neofidelia profuga	802	CHILE: Atacama Prov., 5 km N Inca-havas, 03.x.1999
Noteriades sp.	1580	THAILAND: Chiang Mai, 24.iii.2007
Ochreriades fasciatus	1557	JORDAN: 20 km W Amman, 24.iv.2007
Osmia lignaria	1265	No locality data
Pararhophites quadratus	1547	TUNISIA: Nefta, 28.iii.2006
Promelitta alboclypeata	1321	MOROCCO: Erfoud to Msissi road, 12.iv.2006
Protosmia humeralis	1559	JORDAN: Wadi Shu'ayb, 22.iv.2007
Pseudoheriades moricei	1431	ISRAEL: Negev
Radoszkowskiana rufiventris	1587	EGYPT: Tel el Kebir, 30°32'2"N 31°49'48"
Rophites algirus	968	FRANCE: Var, Entrecasteaux, 14.vi.2002
Thyreus delumbatus	987	SOUTH AFRICA: Limpopo Prov., 14 km E Vivo, 17.iii.2002
Wainia eremoplana	1548	JORDAN: Wadi el Hasa, 20.iv.2007
Xylocopa virginica	1153	USA: NY, Tompkins Co., Ithaca, 8.v.2001

compositional bias, we divided our dataset into fourteen partitions. one for each of the three codon positions of each protein coding gene, as well as two partitions corresponding to the stem and loop regions of 28S. Each partition was tested individually using the "Base/AA frequencies" command in PAUP* 4.0a142 (X86) (Swofford, 2003), which implements a chi-square test for nucleotide heterogeneity among taxa. The test was restricted to ingroup taxa. We found the third codon position of NAK to exhibit a significant compositional bias (P < 0.001) and thus this partition was recoded (i.e. all A's and T's were replaced by G's and C's, respectively; Thomas et al., 2013). The recoding effectively removed the bias from the partition (P = 1.00 after recoding and subsequent reanalysis in PAUP) and the recoded partition was used in all subsequent analyses. We compared this recoding method with another method in which all purines were replaced by "0" and all pyrimidines by "1". In both maximum likelihood and Bayesian analyses, topologies, branch lengths and node support values using this binary recoding method were highly congruent with the results of the first recoding method (differences were restricted to weakly supported nodes, which were not implicated in taxonomic changes). Only results using the first recoding method are presented.

2.4. Partitioning regime and model-testing

We used the same fourteen partitions described above (using the recoded third position of NAK) and performed a greedy search using the BIC metric in PartitionFinder v1.1.0 (Lanfear et al., 2012) to establish a partitioning regime and determine appropriate models of nucleotide substitution. We ran the analysis twice, once to find models adapted for use in RAxML and once to find models adapted for use in MrBayes. Nine partitions were suggested for RAxML (best models in parentheses): the third position of NAK (GTR + I + G); the first position of opsin (GTR + I + G); the second position of opsin (GTR + I + G); the stem region of 28S (GTR + I + G); the first positions of CAD, EF1-alpha and NAK (GTR + I + G); the third positions of CAD and opsin (GTR + I + G); the second position of CAD and the loops region of 28S (GTR+I+G); the second positions of EF1-alpha and NAK (GTR + I + G); and the third position of EF1-alpha (GTR + I + G). Ten partitions were suggested for the MrBayes analysis (best model in parentheses): the first positions of CAD, EF1-alpha, and NAK (GTR + I + G): the second position of CAD and the loops region of 28S (HKY + I + G); the third position of CAD (GTR + I + G); the second positions of EF1-apha and NAK (GTR + I + G); the third position of EF1-alpha (HKY + I + G); the first position of opsin (HKY + I + G); the second position of opsin (SYM + I + G); the third position of opsin (SYM + I + G); +I+G; the third position of NAK (HKY + I + G); and the stems region of 28S (HKY + I + G).

Both the alpha parameter of the gamma distribution and 'I' (i.e. the parameter that allows for an estimation of invariant sites) account for near-zero rates of nucleotide substitution in maximum likelihood and Bayesian analyses. The inevitable correlation between these two parameters makes it impossible to optimize them independently of one another and may be a source of error in parameter estimation (Yang, 2006 and references therein; Stamatakis, 2014). Following the remarks of Yang (2006) and Stamatakis (2014), we excluded the 'I' parameter from all models also including the gamma distribution, despite the recommendations of PartitionFinder. Thus for all nine models cited for the RAxML analysis and all ten models cited for the MrBayes analysis, the 'I' parameter was eliminated and the gamma distribution retained.

We used the same partitions as described above in combined molecular–morphological analyses, plus an additional partition for morphological data. In RAxML analyses, the morphological partition was modeled using the multi-state option with a GTR model (-K GTR). In MrBayes, we used a Lewis model.

2.5. Phylogenetic analyses

We performed maximum likelihood phylogenetic analyses using RAxML v.8.1.11 (sequential version raxmlHPC, Stamatakis, 2006) hosted by the Cipres Science Gateway (Miller et al., 2010). We ran 1000 bootstrap replicates using the rapid bootstrap analysis and then calculated the best-scoring maximum likelihood tree based on the original alignment for both molecular and combined molecular-morphological analyses. We also used MrBayes v.3.1.2 (Huelsenbeck and Ronquist, 2001; Ronquist and Huelsenbeck, 2003), hosted by the Cornell University BRC Bioinformatics Facility, to perform Bayesian phylogenetic analyses. For molecular analyses in MrBayes, we ran six independent analyses for a total of 72 million generations; for mixed molecular-morphological analyses, we ran four independent analyses for a total of 160 million generations. We used Tracer (Rambaut et al., 2014) to evaluate stationarity and determine an appropriate burnin.

3. Results

3.1. Molecular analyses

Maximum likelihood and Bayesian analyses of molecular data yield well-resolved, congruent phylogenies (Figs. 1 and S1). Our results support the monophyly of Michener's Series B but his Series A is paraphyletic, with the genus *Trachusa* forming a strongly supported monophyletic clade, sister to the rest of Anthidiini (sister relationship supported by 100% maximum likelihood (ML) bootstrap support; 97% posterior probability). Our phylogeny

Table 2

GenBank accession numbers for sequences used in this study. Taxa are labeled following our revised classification.

Таха	28S	EF1-alpha	CAD	Opsin	NAK
Ingroup					
Afranthidium (Afranthidium) karooense	HO996039	HO995698	HO995847	HO995770	HO995942
Afranthidium (Capanthidium) capicola	KU976218	KX060937	KX060879	KX060813	KU976158
Áfranthidium (Capanthidium) rubellulum	KU976229	KX060947	KX060889	KX060824	KU976169
Afranthidium (Capanthidium) schulthessi	KU976230	Missing	KX060890	KX060825	KU976170
Afranthidium (Capanthidium) poecilodontum	KU976227	KX060945	KX060887	KX060822	KU976167
Afranthidium (Domanthdium) abdominale	KU976216	KX060936	KX060877	KX060811	KU976156
Afranthidium (Mesanthidium) alternans	KU976217	Missing	KX060878	KX060812	KU976157
Afranthidium (Mesanthidium) carduele	KU976219	KX060938	KX060875	KX060814	KU976159
Afranthidium (Nigranthidium) sp.	KU976226	KX060935	KX060886	KX060821	KU976166
Afranthidium (Nigranthidium) sp. nov. 1	KU976225	KX060944	KX060885	KX060820	KU976165
Afranthiaium (Oraniniaium) joincuiosum	KU976220 KU076222	KX060939	KX060880	KX060815 KX060827	KU976160 KU076172
Afrastelis sp	12869660	IX869701	12869625	IX869733	IX869767
Anthidiellum (Anthidiellum) strigatum	KU976237	KX060954	KX060896	KX060832	KU976177
Anthidiellum (Chloranthidiellum) sp. nov. 1	KU976234	KX060951	KX060892	KX060829	Missing
Anthidiellum (Loyolanthidium) robertsoni	KU976235	KX060952	KX060894	KX060830	KU976175
Anthidiellum (Pycnanthidium) absonulum	KU976233	KX060950	KX060893	KX060828	KU976174
Anthidiellum (Pycnanthidium) sp.	KU976236	KX060953	KX060895	KX060831	KU976176
Anthidium (Anthidium) chilense	KU976238	KX060955	KX060897	KX060833	KU976178
Anthidium (Anthidium) cockerelli	KU976239	KX060956	KX060898	KX060834	KU976179
Anthidium (Anthidium) colliguayanum	KU976240	KX060957	KX060899	KX060835	KU976180
Anthidium (Anthidium) deceptum	KU976242	KX060959	KX060901	KX060837	KU976182
Anthidium (Anthidium) mustre	HQ996040	HQ995699	HQ995848 Missing	HQ995771	HQ995943 CU245158
Anthidium (Anthidium) punctatum	G0244840 KU976246	KX060963	KX060904	KX060841	KU976186
Anthidium (Gulanthidium) sp	KU976240 KU976244	KX060961	Missing	KX060839	KU976180
Anthidium (Proanthidium) oblongatum	KU976245	KX060962	KX060903	KX060840	KU976185
Anthidium (Severanthidium) cordiforme	KU976241	KX060958	KX060900	KX060836	KU976181
Anthidium (Turkanthidium) gratum	KU976243	KX060960	KX060902	KX060838	KU976183
Anthidium (Turkanthidium) unicum	KU976247	KX060964	KX060905	KX060842	KU976187
Anthodioctes (Anthodioctes) mapirensis	HQ996041	HQ995700	HQ995849	HQ995772	HQ995944
Anthodioctes (Bothranthidium) lauroi	KU976248	KX060965	Missing	KX060843	KU976188
Austrostelis catamarcensis	JX869661	JX869702	JX869626	JX869734	JX869768
Aztecantniaium tenocntitianicum Bathanthidium (Manthidium) hinghami	KU976249	MISSING	KX060906	KX060844	KU976189
Bathanthiann (Manthiann) Dhighann Benanthis madagascariensis	HQ996044 HQ96045	HQ995705 HQ95704	HQ995852 HQ95853	HQ995775 HQ95776	HQ995947 HQ95048
Cynhanthidium intermedium	KU976250	KX060966	KX060907	KX060845	KU976190
Dianthidium (Adanthidium) arizonicum	H0996046	H0995705	H0995854	H0995777	H0995949
Dianthidium (Dianthidium) subparvum	GU244843	GU244993	KX060909	KX060847	GU245155
Dianthidium (Mecanthidium) macrurum	KU976251	KX060967	KX060908	KX060846	KU976191
Duckeanthidium thielei	HQ996047	HQ995706	HQ995855	HQ995778	HQ995950
Eoanthidium (Clistanthidium) turnericum	HQ996048	HQ995707	HQ995856	HQ995779	HQ995951
Eoanthidium (Eoanthidium) clypeare	KU976252	KX060968	KX060910	KX060848	KU976192
Epanthidium (Epanthidium) bicoloratum	HQ996049	HQ995708	HQ995857	HQ995780	HQ995952
Euaspis abaominalis	JX869662	JX869703	JX869627	JX869/35	JX869769
Euuspis polynesiu Hoplostelis hivittata	JA809005 JX860671	JX809704 JX860705	JA009020 Missing	JX809730	JX869770
Hypanthidioides (Saranthidium) marginata	H0996050	H0995709	H0995858	HO995781	HO995953
Hypanthidium (Hypanthidium) obscurius	HQ996051	HQ995710	HQ995859	HQ995782	HQ995954
Icteranthidium ferrugineum	HQ996052	HQ995711	HQ995860	HQ995783	HQ995955
Notanthidium (Allanthidium) rodolphi	KU976254	KX060969	KX060912	KX060849	KU976193
Notanthidium (Notanthidium) steloides	HQ996053	HQ995712	HQ995861	HQ995784	HQ995956
Pachyanthidium (Ausanthidium) ausense	KU976255	KX060970	KX060913	KX060850	KU976194
Pachyanthidium (Pachyanthidium) bicolor	KU976256	Missing	KX060914	KX060851	KU976195
Pachyanthiaium (Pachyanthiaium) coraatum	KU976257	KX060971	KX060915	KX060852	KU976196
Pachyaniniaium (Trichanthidium) benguelense	HQ996054	HQ995713	HQ995862	HQ995785	HQ995957 VU076107
Paranthidium (Paranthidium) iugatorium	GU244844	GU244994	H0995863	H0995786	GU245156
Paranthidium (Rananthidium) sp. nov. 2	KU976259	KX060973	KX060917	KX060854	KU976198
Plesianathidium (Carinanthidium) cariniventre	KU976261	KX060975	KX060919	KX060856	KU976200
Plesianthidium (Spinanthidiellum) rufocaudatum	KU976262	KX060976	KX060920	KX060857	KU976201
Plesianthidium (Spinanthidiellum) volkmanni	KU976263	KX060977	KX060921	KX060858	KU976202
Plesianthidium (Spinanthidium) calescens	KU976260	KX060974	KX060918	KX060855	KU976199
Plesianthidium (Spinanthidium) trachusiforme	KU976264	KX060978	KX060922	KX060859	KU976203
Pseudoanthidium (Branthidium) micrurum	KU976223	KX060942	KX060883	KX060818	KU976163
Pseudoanthidium (Branthidium) minutulum	KU976224	KX060943	KX060884	KX060819	KU976164
Pseudoanthidium (Exanthidium) eximium	KU9/6265	KX060980	KX060923	KX060860	KU976204
r seauoantniaiam (Innnantniaiam) innnaculalam Pseudoanthidium (Immanthidium) innodi	KU976221 KU976222	KX060940 KX060041	KXU60883	KX060810	KU970101 KU976162
Pseudoanthidium (Immanthidium) renetitum	KU976222	KX060941	KX060882	KX060817	KU976162
Pseudoanthidium (Immanthidium) sioestedti	KU976231	KX060948	KX060891	KX060826	KU976171
Pseudoanthidium (Micranthidium) sp.	KU976268	KX060982	KX060926	KX060862	KU976206
Pseudoanthidium (Micranthidium) sp. nov. 3	KU976267	Missing	KX060925	KX060864	Missing

Table 2 (continued)

Таха	285	EF1-alpha	CAD	Opsin	NAK
Pseudoanthidium (Neanthidium) octodentatum	KU976253	KX060983	KX060911	KX060863	Missing
Pseudoanthidium (Pseudoanthidium) scapulare	HQ996055	HQ995714	HQ995864	HQ995787	HQ995958
Pseudoanthidium (Royanthidium) melanurum	KU976266	KX060981	KX060924	KX060861	KU976205
Pseudoanthidium (Tuberanthidium) tuberculiferum	KU976269	KX060979	KX060927	KX060865	KU976207
Pseudoanthidium (Zosteranthidium) tergofasciatum	KU976270	Missing	Missing	KX060866	KU976173
Rhodanthidium (Asianthidium) caturigense	KU976271	KX060984	KX060928	KX060867	KU976208
Rhodanthidium (Meganthidium) superbum	KU976272	KX060985	Missing	KX060868	KU976209
Rhodanthidium (Rhodanthidium) septemdentatum	HQ996056	HQ995715	HQ995865	HQ995788	HQ995959
Serapista rufipes	HQ996057	HQ995716	HQ995866	HQ995789	HQ995960
Serapista soni Stalia (Daliahastalia) laticinata	KU9/62/3	KX060986	KX060929	KXU60869	KU9/6210
Stelis (Dolichostelis) luticificia Stelis (Dolichostelis) perpulchra	1X869692	JX809719 IX869725	JX809044 JX869650	JX809752 IX869758	JX809785 IX869791
Stelis (Dolichostelis) perputcha	IX869694	IX869727	JX869653	IX869761	IX869794
Stelis (Beterostelis) annulata	IX869673	IX869707	IX869630	IX869739	IX869773
Stelis (Heterostelis) anthidioides	IX869674	Missing	IX869631	Missing	Missing
Stelis (Heterostelis) hurdi	JX869682	JX869714	JX869639	JX869747	JX869780
Stelis (Heterostelis) ruficornis	JX869695	Missing	JX869654	Missing	JX869795
Stelis (Malanthidium) sp. 1	JX869698	JX869730	JX869657	JX869764	JX869798
Stelis (Malanthidium) sp. 2	JX869700	JX869732	JX869659	JX869766	JX869800
Stelis (Protostelis) signata	JX869697	JX869729	JX869656	JX869763	JX869797
Stelis (Stelidomorpha) nasuta	JX869688	JX869721	JX869646	JX869754	JX869787
Stelis (Stelis) anthocopae	JX869675	JX869708	JX869632	JX869740	JX869774
Stelis (Stelis) anthracina Stelis (Stelis) broomalingi	JX869676	JX869709 Missing	JX869633	JX869741	JX869775 Missing
Stells (Stells) proefficility	JX809077	IVISSING	JX809034	JX809742	WISSING
Stelis (Stelis) camifey	JX809078 IX869679	JX809710 IX869711	1X869636	JX809743 IX869744	JX809770 JX869777
Stelis (Stelis) foederalis group sp. B	IX869680	IX869712	JX869637	JX869745	JX869778
Stelis (Stelis) holocyanea	IX869681	IX869713	IX869638	IX869746	IX869779
Stelis (Stelis) interrupta	Missing	JX869715	JX869640	JX869748	JX869781
Stelis (Stelis) joanae	JX869683	JX869716	JX869641	JX869749	JX869782
Stelis (Stelis) lamelliterga	JX869684	JX869717	JX869642	JX869750	JX869783
Stelis (Stelis) lateralis	JX869685	JX869718	JX869643	JX869751	JX869784
Stelis (Stelis) linsleyi	Missing	GU245002	JX875064	GU245312	GU245162
Stelis (Stelis) monticola	JX869687	JX869720	JX869645	JX869753	JX869786
Stelis (Stelis) occidentalis	JX869689	JX869722	JX869647	JX869755	JX869788
Stelis (Stelis) paiute	HQ996058	HQ995717	HQ995867	HQ995790	HQ995961
Stelis (Stelis) paimarum Stelis (Stelis) pavoning	JX869690	JX869723	JX869648	JX869756	JX869789
Stelis (Stelis) puvolillu Stelis (Stelis) pupotulatissima	17009091	JA009724 IX960726	JA009049	JA009757	JA009790
Stelis (Stelis) punctuluissinu Stelis (Stelis) aff. robertsoni	JX809093 IX869672	JX809720 IX869706	1X869629	JX809739 IX869738	JX809792 JX869772
Stelis (Stelis) semirubra	IX869696	IX869728	JX869655	IX869762	IX869796
Stelis (Stelis) subcaerulea	IX869699	IX869731	IX869658	IX869765	IX869799
Stelis rozeni	Missing	Missing	JX869652	JX869760	JX869793
Trachusa (Archianthidium) pubescens	HQ996059	HQ995718	HQ995868	HQ995791	HQ995962
Trachusa (Congotrachusa) schoutedeni	KU976275	Missing	KX060931	KX060871	KU976212
Trachusa (Heteranthidium) cordaticeps	KU976276	KX060988	KX060932	KX060872	KU976213
Trachusa (Heteranthidium) larreae	GU244842	HQ995719	HQ995869	HQ995792	GU245154
Trachusa (Paraanthidium) interrupta	KU976277	KX060989	KX060933	KX060873	KU976214
Trachusa (Trachusa) byssina Trachusa (Trachusaning) nandita	KU976274	KX060987	KX060930	KX060870	KU976211
Trachusa (Trachusomimus) peraita	KU976278	KX060990	KX060934	KX060874	KU976215
Outgroup					
Afroheriades primus	HQ996092	EU851532	HQ995902	EU851638	HQ995995
Anthophora montana	HQ996012	AY585107	DQ067177	AF344616	HQ995919
Apis mellijera Ashmandialla avidula	AY/03551	AF015267	DQ06/1/8	AMU26026	XM_623142
Asnineuulella urlaulu Asnidosmia arnoldi	GU244858 HO006042	EU831333 U0005701	HQ995903	EU851041 HO005772	GU245171
Aspidosmia unitotat Aspidosmia volkmanni	HQ990042 HQ996043	HQ995701 HQ995702	HQ993830 HQ993851	HQ995773 HQ995774	HQ995945
Rombus ardens	HM750237	AF492964	FU184803	AF493031	FU184741
Ceratina calcarata	H0996011	AY585108	D0067190	AF344620	GU245213
Chelostoma florisomne	HQ996094	EU851546	HQ995905	EU851652	HQ995997
Coelioxys afra	HQ996060	EU851528	HQ995870	EU851634	HQ995963
Colletes inaequalis	HQ996017	AY363004	DQ067139	DQ115542	EF646387
Ctenoplectra albolimbata	HQ996013	AY585118	EU122060	DQ116677	EF646391
Dasypoda argentata	AY654518	AY585148	DQ067161	DQ116680	EF646418
Dioxys moesta	HQ996037	HQ995696	HQ995845	HQ995768	HQ995940
Epicharis analis	GU244759	GU244920	Missing	GU245241	GU245064
Flaella major Hastosmis kusskuurs	HQ996027	DQ141113	HQ995833	EU851628	HQ995931
Haelosmia Drachyura Hariadas crucifar	HQ990095	HU995748	HQ995906	HQ995822	HQ995998
Honlitis adunca	GU244033 HA996A97	EU001000 FU851572	HU002008	EU051001 FU851678	GU243108 HOQQ6000
Iithurous chrysurus	H0996031	FU851572	H0995837	FU851629	H0995934
Macropis nuda	HO996008	AY585155	D0067171	D0116686	H0995917
Megachile bombiformis	HQ996076	HQ995733	HQ995886	HQ995806	HQ995979
Meganomia binghami	HQ996010	DQ141114	DQ067169	DQ116689	EF646406

(continued on next page)

Table 2	(continued)	
---------	-------------	--

Таха	28S	EF1-alpha	CAD	Opsin	NAK
Melitta leporina	AY654529	AY585158	DQ067174	DQ116688	EF646394
Melitturga clavicornis	HQ996015	AY585104	DQ067134	DQ116703	HQ995920
Neofidelia profuga	HQ996030	GU244990	HQ995836	HQ995760	GU245151
Noteriades sp.	HQ996090	EU851589	HQ995900	EU851695	HQ995993
Ochreriades fasciatus	HQ996098	EU851590	HQ995909	EU851696	HQ996001
Osmia lignaria	GU244856	EU851610	HQ995910	EU851715	GU245169
Pararhophites quadratus	GU244841	EU851522	HQ995824	EU851627	GU245153
Promelitta alboclypeata	HQ996009	EF594330	Missing	EF594379	HQ995918
Protosmia humeralis	HQ996101	EU851621	HQ995913	EU851726	HQ996004
Pseudoheriades moricei	HQ996102	EU851622	HQ995914	EU851727	HQ996005
Radoszkowskiana rufiventris	HQ996091	HQ995747	HQ995901	HQ995821	HQ995994
Rophites algirus	HQ996016	AY585144	DQ067159	DQ116675	HQ995921
Thyreus delumbatus	HQ996014	AY585119	DQ067184	DQ116679	GU245118
Wainia eremoplana	HQ996104	EU851626	HQ995916	EU851731	HQ996007
Xylocopa virginica	GU244903	GU245047	Missing	GU245343	GU245220

demonstrates that anthidiine bees fall into five major suprageneric clades; given the behavioral differences exhibited by these five clades, we present them as a replacement for Michener's Series A and Series B (Table 3). These clades are: (1) the Trachusa group (100% ML bootstrap; 100% posterior probability); (2) the Anthidium group (100% ML bootstrap; 99% posterior probability); (3) the Anthodioctes group (100% ML bootstrap; 99% posterior probability); (4) the Dianthidium group (84% ML bootstrap; 95% posterior probability); and (5) the Stelis group (98% ML bootstrap; 100% posterior probability). The Anthidium group, which corresponds to Michener's Series B. are those anthidiines that use plant fibers in nest construction. The Trachusa. Anthodioctes. and Dianthidium groups, all included in Michener's Series A, represent those bees that use resin in nest construction (with the exception of the cleptoparasitic genera Hoplostelis and Austrostelis in the Anthodioctes group). The Stelis group, also included in Michener's Series A. is exclusively cleptoparasitic.

The descriptions of two genera not included in the phylogeny, *Trachusoides* and *Apianthidium*, suggest a close phylogenetic relationship with *Trachusa*; in order to accommodate the likely future addition of these genera to the *Trachusa* group, we choose to refer to this clade as the *Trachusa* group (and not simply as the genus *Trachusa*). The genus name *Hoplostelis* Dominique, 1898 is the oldest in the *Anthodioctes* group; we prefer to name the group, however, for a genus whose behavior is representative of the group in general. For this reason, we name the group after the oldest available non-cleptoparasitic genus name in the group, *Anthodioctes* Holmberg, 1903.

While Michener (2007) included the genus *Aspidosmia* in his Series A, both molecular and morphological data refute the placement of this genus in the tribe Anthidiini (Litman et al., 2011; Gonzalez et al., 2012). A recent paper officially removed *Aspidosmia* from Anthidiini and placed it in its own tribe, Aspidosmiini (Gonzalez et al., 2012). *Aspidosmia* is thus excluded from our classification of Anthidiini.

The results of our phylogenetic analyses challenge the current classification of anthidiine bees, primarily because many genera and several subgenera emerge as paraphyletic. The Anthidium group includes the genera Serapista, Anthidium, Afranthidium, Pseudoanthidium, Neanthidium, Anthidioma, Indanthidium and Gnathanthidium (the last three genera represented here only by morphological data). The central and southern African genus Serapista is strongly supported as monophyletic (100% ML bootstrap support; 100% posterior probability) and is moderately well-supported as the sister clade to the rest of the Anthidium group (63% ML bootstrap; 98% posterior probability). The remaining members of the Anthidium group form three clades. One of these clades is the genus Anthidium, strongly supported as mono-

phyletic in both ML and Bayesian analyses (100% ML bootstrap support; 100% posterior probability).

The second clade contains most but not all subgenera of the genus *Afranthidium* (i.e. *Afranthidium*, *Oranthidium*, *Domanthidium*, *Capanthidium*, *Mesanthidium*, and *Nigranthidium*). This clade is strongly supported in both ML and Bayesian analyses (95% ML bootstrap; 100% posterior probability). The subgenera *Afranthidium* (*Capanthidium*), *Afr. (Mesanthidium*), and *Afr. (Nigranthidium*) are paraphyletic.

The third clade contains all members of *Pseudoanthidium*, three subgenera of *Afranthidium* (*Immanthidium*, *Branthidium* and *Zosteranthidium*) and the genus *Neanthidium*. This clade is strongly supported in both ML and Bayesian analyses (96% ML bootstrap; 99% posterior probability).

The Anthodioctes group consists of the Central and South American genera *Aztecanthidium*, *Notanthidium*, *Epanthidium*, Anthodioctes, Hoplostelis, Austrostelis, Hypanthidium, Hypanthid*ioides*, and *Duckeanthidium*: these genera form a strongly supported monophyletic clade sister to the *Dianthidium* group + the Stelis group. Hoplostelis is strongly supported as the sister taxon to Austrostelis in both Bayesian and ML analyses (100% ML bootstrap; 100% posterior probability); Anthodioctes (Bothranthid*ium*) *lauroi* is strongly supported as the sister taxon to Hoplostelis + Austrostelis (100% ML bootstrap; 92% posterior probability). A sister-group relationship between Hypanthidium and Duckeanthid*ium* is moderately supported in ML analyses (71% ML bootstrap) and strongly supported in Bayesian analyses (100% posterior probability). While Bayesian analyses recover highly resolved relationships for other clades in the group, ML analyses suggest that all other phylogenetic relationships within this group are unclear.

In the Dianthdium clade, the Asian genus Bathanthidium is the sister taxon to a clade consisting of the Central and North American genera Paranthidium and Dianthidium. These three genera are a strongly supported monophyletic group (96% ML bootstrap; 96% posterior probability) which is sister to a clade containing the genera Rhodanthidium, Icteranthidium, Eoanthidium, Anthidiellum, Pachyanthidium, Benanthis, Cyphanthidium and Plesianthidium (96% ML bootstrap; 100% posterior probability), all eastern hemisphere taxa with the exception of Anthidiellum, which is widespread in both hemispheres; this sister group relationship is well-supported in ML analyses (84% ML bootstrap) and strongly supported in Bayesian analyses (95% posterior probability). These eleven genera together form the Dianthidium group. The subgenus Anthidiellum (Pycnanthidium) is strongly supported as monophyletic (100% ML bootstrap; 100% posterior probability); this subgenus, together with the genera Eoanthidium and Benanthis, are well supported as monophyletic in ML analyses (87% ML bootstrap) and strongly supported in Bayesian analyses (100% posterior

J.R. Litman et al./Molecular Phylogenetics and Evolution 100 (2016) 183-198

Trachusa group

Anthidium group

© Ento Alber

Anthodioctes group

Dianthidium group

Stelis group

Fig. 1. Best scoring maximum likelihood tree based on analysis of molecular data. Numbers shown at nodes are maximum likelihood bootstrap values based on 1000 bootstrap replicates in RAxML. Terminals are labeled following our revised classification. Black asterisks indicate cleptoparasitic clades.

Table 3

Revised suprageneric classification of Anthidiini based on the results of maximum likelihood and Bayesian phylogenetic analyses of molecular data. Genera included in our molecular dataset are marked in bold typeface; genera not included in our molecular dataset are marked in regular typeface and are proposed affiliations. Each genus is marked with either an "A" or a "B", indicating whether they belong to Michener's Series A or Series B (2000, 2007). Based on the results of prior studies, we have omitted the genus *Aspidosmia* from Anthidiini.

Trachusa group	Anthidium group	Anthodioctes group	Dianthidium group	Stelis group
Apianthidium (A) Trachusa (A) Trachusoides (A)	Afranthidium (B) Anthidioma (B) Anthidium (B) Indanthidium (B) Pseudoanthidium (B) Serapista (B)	Anthodioctes (A) Austrostelis (A) Aztecanthidium (A) Duckeanthidium (A) Epanthidium (A) Hoplostelis (A) Hypanthidioides (A) Hypanthidium (A) Notanthidium (A)	Acedanthidium (A) Anthidiellum (A) Bathanthidium (A) Benanthis (A) Cyphanthidium (A) Dianthidium (A) Eoanthidium (A) Icteranthidium (A) Paranthidium (A) Plesianthidium (A) Rhodanthidium (A)	Afrostelis (A) Euaspis (A) Larinostelis (A) Stelis (A) Xenostelis (A)

probability). The subgenera *Pachyanthidium* (*Trichanthidium*) and *Pachyanthidium* (*Pachyanthidium*) are each strongly supported as monophyletic, although the genus *Pachyanthidium* is paraphyletic. The genera *Anthidiellum* and *Plesianthidium* are also paraphyletic in both Bayesian and ML analyses. *Plesianthidium* (*Spinanthidiellum*) and all members of *Pachyanthidium* and *Anthidiellum* (with the exception of subgenus *Pycnanthidium*) together constitute a well-supported clade (73% ML bootstrap support; 100% posterior probability). The genus *Rhodanthidium* is paraphyletic in both ML and Bayesian analyses, although node support is low.

The genera *Stelis, Euaspis* and *Afrostelis* form the strongly supported *Stelis* group. The lineages *Stelis* (*Stelidomorpha*) *nasuta, Stelis* (*Heterostelis*) *ruficornis, Stelis* (*Heterostelis*) *annulata, Stelis rozeni, Afrostelis,* and *Euaspis* form a weakly supported clade at the base of the *Stelis* group (51% ML bootstrap; 89% posterior probability). *Stelis* (*Heterostelis*) *hurdi, Stelis* (*Heterostelis*) *anthidioides* and the three species of *Stelis* (*Dolichostelis*) present in our phylogeny form a monophyletic group, sister to *Stelis* (*Malanthidium*) + *Stelis* (*Protostelis*) + *Stelis* (*Stelis*). The subgenus *Stelis* (*Stelis*) is strongly supported as monophyletic (95% ML bootstrap; 100% posterior probability), as are the subgenera *Stelis* (*Dolichostelis*) (100% ML bootstrap; 100% posterior probability) and *Stelis* (*Malanthidium*) (99% ML bootstrap; 100% posterior probability). *Stelis* (*Heterostelis*) is paraphyletic.

3.2. Combined molecular-morphological analyses

We used combined molecular–morphological analyses to tentatively place four rare genera missing from our molecular dataset. No taxonomic changes were made based on these analyses. In the absence of molecular data for these taxa, however, the use of morphological data gives an idea of the placement of these four genera in the context of a molecular-based phylogenetic backbone.

Maximum likelihood and Bayesian analyses of combined data are presented in Figs. S2 and S3. In ML analyses of combined data, *Indanthidium crenulaticauda* forms a polytomy with *Afranthidium* and *Anthidium*. In Bayesian analyses, combined data weakly support *Indanthidium crenulaticauda* as the sister group to the genus *Serapista* (<50% posterior probability). *Anthidioma chalicodomoides* is in a polytomy with the genus *Anthidium* in ML analyses; in Bayesian analyses, *Anthidioma chalicodomoides* is nested within the subgenus *Anthidium* (*Anthidium*) (59% posterior probability). In ML analyses, combined data place *Gnathanthidium prionognathum* in a polytomy with *Pseudoanthidium* (*Micranthidium*) and *Afranthidium* (*Immanthidium*). In Bayesian analyses, combined data weakly support *Gnathanthidium* prionognathum as the sister taxon to *Pseudoanthidium* (*Micranthidium*) (<50% posterior probability). Finally, Bayesian analyses of combined data weakly support the placement of *Xenostelis polychroma* within the subgenus *Stelis* (*Stelis*). In ML analyses of combined data, *Xenostelis polychroma* is weakly supported as the sister taxon to Anthidiini (<50% ML bootstrap).

4. Discussion

4.1. The Trachusa group

Griswold and Michener (1988) placed the New World subgenera Heteranthidium, Legnanthidium, Trachusomimus, and Ulanthidium into the genus Trachusa; Michener and Griswold (1994b) later added the Old World subgenera Archianthidium, Congotrachusa, Massanthidium, Metatrachusa, Orthanthidium, and Paraanthidium. The genus Trachusa thus includes eleven subgenera and is identifiable by a number of synapomorphies, including the lateral ocellus closer to the eye than to the posterior margin of the vertex (although equidistant in T. (Heteranthidium) larreae and bequaerti, and T. (Metatrachusa)) (Griswold and Michener, 1988; Michener, 2007); a median ocellus whose anterior margin is closer to the antennal bases than to the posterior margin of the vertex (or equidistant) (Griswold and Michener, 1988); foreand mid-tibial spines produced as blunt, obtuse projections that extend along the tibial surface as carinae (Griswold and Michener, 1988); vein cu-v of the hind wing oblique and onehalf the length of the second abscissa of M + Cu (vein cu-v oblique but less than one-half the length of M + Cu in T. (Metatrachusa)) (Michener, 2007); and a small male T7 curved under the abdomen so that its dorsal surface faces ventrally (Michener, 2007).

The position of *Trachusa* as sister to the rest of Anthidiini is supported by a series of characters that are plesiomorphic with respect to other anthidiines, including fine punctation and the general absence of carinae, sulci, and propodeal pits (Michener, 1948; but see subgenera *Orthanthidium* and *Paraanthidium*, Michener, 2007, both of which have a carinate omaulus and carinate or lamellate pronotal lobes). The six subgenera present in our phylogeny together form a strongly supported monophyletic group (Figs. 1 and S1–S3); the future addition of the remaining subgenera to our phylogeny will clarify whether the genus as it is currently defined is monophyletic.

4.2. The Anthidium group

In the genus Anthidium, our results support the recent synonymization of Anthidium (Callanthidium) with the subgenus Anthidium (Anthidium) (Gonzalez and Griswold, 2013): Anthidium *illustre*, formerly placed in the subgenus *Callanthidium*, is clearly nested within the subgenus *Anthidium*.

In the Afranthidium clade, the subgenera Afr. (Capanthidium), Afr. (Mesanthidium), and Afr. (Nigranthidium) are all paraphyletic (Figs. 1 and S1-S3). Michener (2007) may have unintentionally predicted the paraphyly of Afr. (Capanthidium), when he described the marked differences in male genitalia within the subgenus as either "parallel-sided" (as in Afr. capicola) or "paddle-shaped" (as in Afr. rubellulum). Afranthidium (Capanthidium) capicola is strongly supported as the sister taxon to a clade consisting of Afr. (Mesanthidium) carduele, Afr. (Mesanthidium) alternans and Afr. (Capanthidium) schulthessi; Afr. (Capanthidium) rubellulum, on the other hand is more closely related to Afr. (Nigranthidium) sp. nov. 1. Furthermore, Afr. (Capanthidium) poecilodontum, described as "anomalous" by Michener (2007) due to distinctive wing venation shared with Afr. (Nigranthidium) concolor, is strongly supported as the sister taxon to Afr. (Nigranthidium) sp. A simple solution would be to synonymize Afr. (Capanthidium), Afr. (Mesanthidium), and Afr. (Nigranthidium). We prefer, however, to defer a final decision regarding these subgenera until further taxa may be included in the phylogeny and a more informed taxonomic decision may be made.

Combined molecular–morphological data place three genera represented only by morphological data within the *Anthidium* group (Figs. S2 and S3). Michener (2007) likened *Gnathanthidium prionognathum* to the subgenus *Pseudoanthidium* (*Micranthidium*), based on the almost lamellate preoccipital ridge, pronotal lobe, omaulus, and scutellar truncation, the absence of lateral teeth on male T6 and T7, and the bilobed male T7. Our results indeed suggest a close relationship between the genus *Gnathanthidium* and the subgenera *P*. (*Micranthidium*) and *P*. (*Immanthidium*).

Indanthidium crenulaticauda exhibits a suite of characters that makes it difficult to assess its phylogenetic affinities based on morphological data alone. Like the genus Anthidium, its yellow tergal bands are divided into four spots each, yet it differs from Anthidium in the punctation and shape of the depressed marginal zone in the male T5 (Michener and Griswold, 1994b). Indanthidium has arcuate subantennal sutures, as does the genus *Pseudoanthidium*: unlike Pseudoanthidium, however, males lack combs on S1-S6 (Michener and Griswold, 1994b). Indanthidium is unique in the shape of the male T7 and in its one-segmented maxillary palpi (Michener and Griswold, 1994b). Maximum likelihood analyses of combined data place Indanthidium in a polytomy with the genera Anthidium and Afranthidium (Fig. S2), while Bayesian analyses place it as the sister taxon to the genus Serapista (Fig. S3). The actual phylogenetic position of Indanthidium may only be revealed upon the addition of genetic data.

The genus *Anthidioma* is a rare, southern African bee lacking the carinae and maculations found in most anthidiines and known only from female specimens. While certain morphological characters are shared between *Anthidioma*, *Afranthidium* (*Afranthidium*) and *Afranthidium* (*Oranthidium*) (Michener, 2007), our analyses suggest a closer phylogenetic relationship between *Anthidioma* and the genus *Anthidium* (Figs. S2 and S3). Determining the phylogenetic position of *Anthidioma* may be facilitated by an evaluation of male morphological characters, thus far unknown, as well as the addition of genetic data.

4.3. The Anthodioctes group

The majority of the *Anthodioctes* group are notable for the presence of juxtantennal carinae (only absent in *Hypanthidium*, *Notanthidium*, and *Aztecanthidium*) and postspiracular pits on the propodeum (only absent in *Notanthidium*, and *Aztecanthidium*), characters rare elsewhere in Anthidiini. Juxtantennal carinae are absent in the *Trachusa* and *Anthidium* groups, rare in the *Dianthid*-

ium group (only some *Dianthidium* and *Eoanthidium*), and found only in *Euaspis* and *Larinostelis* in the *Stelis* group; postspiracular pits are likewise absent in the *Trachusa* and *Anthidium* groups, present only in *Bathanthidium* and *some Anthidiellum* in the *Dianthidium* group and occur sporadically in the *Stelis* group: all *Afrostelis, Euaspis, Larinostelis, S. rozeni, S. (Protostelis), S. (Dolichostelis),* and some *S. (Malanthidium), S. (Heterostelis), S. (Stelis).*

Relationships in the Anthodioctes group are generally weakly supported, with the exception of the clade consisting of (Hoplostelis + Austrostelis) + Anthodioctes (Bothranthidium). Hoplostelis was originally proposed by Pérez as a subgenus of Stelis (see Griswold and Michener, 1988) but has long been recognized as a distinct genus (Griswold and Michener, 1988); it differs from New World Stelis by the presence of distinct foyeae between the scutum and scutellum, the short, transverse scutellum, the presence of a single spine on fore- and mid-tibiae, the apicolateral tooth of the male sixth sternite, and the quadridentate female mandible (Griswold and Michener, 1988). Hoplostelis also lacks the distinctive clubbed gonostylus of male Stelis (Griswold and Michener, 1988). Our results clearly indicate the monophyly of the clade Hoplostelis + Austrostelis and thus strongly support two independent origins of cleptoparasitism in Anthidiini, one in the Hoplostelis + Austrostelis clade and the second in the Stelis clade (Figs. 1 and S1-S3).

The genus *Austrostelis* was originally recognized as a subgenus of *Hoplostelis* (Michener and Griswold, 1994a); the presence, however, of unique morphological characters which clearly distinguish it from other members of *Hoplostelis*, including the sparse punctation of T1 and T6, the elongate body form, and the unmodified female mandible, have caused it to be recognized as a unique genus (Michener, 2007). Although our analyses support the possibility that *Austrostelis* and *Hoplostelis* are two distinct genera, only the inclusion of other species from both genera will clarify whether the genera are reciprocally monophyletic.

While the majority of the Anthodioctes group are nest-building bees, both Hoplostelis and Austrostelis are cleptoparasites. Hosts of Hoplostelis are bees of the tribe Euglossini, while hosts of Austrostelis catamarcensis include Epanthidium tigrinum (Zanella and Ferreira, 2005) and, possibly, members of the genus Hypanthidioides (Michener and Griswold, 1994a). While the cleptoparasitic strategy of Austrostelis is not known, adult female Hoplostelis invade nest cells that have already been closed by the host and then kill the host's larvae; the cleptoparasitic larvae develop on the pollen collected by the host bee for her own offspring (Bennett, 1966). Given the preference of both Austrostelis and Hoplostelis for resin-nesting hosts, the affinity of cleptoparasites of closed host nests for closely related hosts (Litman et al., 2013 and references therein), and the close phylogenetic relationship between Austrostelis, Hoplostelis and the subgenus Anthodioctes (Bothranthidium) lauroi, we predict that Anthodioctes (Bothranthidium) may eventually be revealed as a host for other species of Austrostelis.

Two nest-building genera, *Notanthidium* and *Anthodioctes*, are revealed as paraphyletic, although node support values, especially in the case of *Notanthidium*, are weak. If the addition of further data indeed supports the paraphyly of these genera, it may be more appropriate to recognize current subgenera (as per Michener, 2007) as genera, as proposed by Urban and Moure (2012).

4.4. The Dianthidium group

The subgenus *Dianthidium* (*Mecanthidium*) was originally described in the genus *Paranthidium* (Michener, 1942). Although Michener (1942) did not specify the characters that he felt allied the subgenus *Mecanthidium* with the genus *Paranthidium*, his 1948 key grouped together the members of *Paranthidium* based

on the structure of the apical margin of the female mandible and the shape of the male T7 (Michener, 1948). Griswold and Michener (1988) later moved *Mecanthidium* into the genus *Dianthidium*, due to the tridentate mandible shared between the subgenus *Mecanthidium* and the rest of the genus *Dianthidium*, and in contrast to the quadridentate mandible of *Paranthidium* (Griswold and Michener, 1988). Our results strongly support the sister relationship between *Dianthidium* and *Paranthidium* and confirm the phylogenetic affinity of the subgenus *Mecanthidium* with the genus *Dianthidium*. Although Michener (2007) suggests that *Bathanthidium* (*Manthidium*) may be more appropriately placed in the subgenus *Anthidiellum* (*Ranthidiellum*), our results confirm a close phylogenetic relationship between *Bathanthidium*, *Paranthidium*, and *Dianthidium*.

Branch support is low in the rest of the *Dianthidium* group and paraphyly is rife, revealing an incoherence between existing anthidiine classification (as per Michener, 2007) and the underlying phylogenetic relationships among taxa. The genus Plesianthiddistinct clades, Plesianthidium ium emerges in two (Spinanthidiellum) and (Plesianthidium (Spinanthidium) + Plesianthidium (Carinanthidium)), although the latter clade is only moderately well-supported in maximum likelihood analyses (Figs. 1 and S1-S3). Plesianthidium (Spinanthidiellum) exhibits certain morphological characters that distinguish it from other subgenera of *Plesianthidium*, including a carinate preoccipital ridge, an angled scutellum and a weakly trifid T7. It is thus perhaps unsurprising that Plesianthidium (Spinanthidiellum) forms a monophyletic group not closely related to the other subgenera of Plesianthidium present in our phylogeny.

Examination of the clade *Pachyanthidium* + *Anthidiellum* (minus Pycnanthidium) + Plesianthidium (Spinanthidiellum) reveals a number of shared morphological characters. All have a very short mesepisternum ventrally, a broadly rectangular scutellum with a truncate posterior margin and a lamellate preoccipital margin (except carinate in Anthidiellum s. str.), characters not found in other members of the Dianthidium group. In addition, the omaulus is complete (not interrupted ventrally) in all but Spinanthidiellum and the pronotal lobe is lamellate (except carinate in Spinanthidiel*lum*); among related taxa, these characters are found only in some Anthidiellum (Pycnanthidium). The wide, thin heads with narrow genae are distinctive. Members of this clade could be combined within the genus Anthidiellum with recognition of all subgenera represented in the clade. In this case, however, the status of several rare tropical Asian subgenera presently in Anthidiellum would remain unclear, as they do not share the combination of characters outlined above.

4.5. The Stelis group

This exclusively cleptoparasitic group encompasses the greatest diversity in integumental coloration of any of the groups. Background color ranges from black to red to metallic blue or green, with or without white to yellow to red markings. It also has the greatest diversity in the shape of the female sixth tergum and sternum. Structures often appear patterned after their host. For example, *Stelis (Heterostelis)* has an expanded mid tibia, as does its host, *Trachusa. Stelis (Dolichostelis)* is slender and elongate like its host, *Megachile (Chelostomoides)*, likely an adaptation to the stemnesting habit of *M. (Chelostomoides). Stelis (Protostelis)* has a pattern of yellow maculations, laterally expanded axillae and the broad scutellum of its host, *Anthidiellum* s. str.; and S. (S.) montana and related species are the solid blue–green of their hosts, *Osmia.*

Our results confirm that the cleptoparasitic genera *Stelis, Afrostelis,* and *Euaspis* together form a strongly supported monophyletic clade (Litman et al., 2013). The weakly supported phylogenetic position of *Afrostelis* and *Euaspis* within the genus *Stelis*, however, makes it unclear whether one or both of these genera render the genus *Stelis* paraphyletic (either genus could be nested within the *Stelis*-clade or, alternatively, could represent the sister group to the rest of the clade).

The genus *Afrostelis* is morphologically distinct from *Stelis* in its highly modified thorax and unique male genitalia (Cockerell, 1931; Michener and Griswold, 1994b). Like *Stelis*, however, it exhibits two apical spines on its fore- and mid-tibiae and some have theorized that *Afrostelis* may be a specialized derivative of *Stelis* (Michener and Griswold, 1994b). The genitalia of male *Euaspis* differ from those of *Stelis*: although the male gonostylus is slender at the base (as in *Stelis*), the distal end of the gonostylus is rounded and flattened (Viereck, 1924), rather than angulate and broadened, as in *Stelis*. Like *Stelis*, however, *Euaspis* has two apical spines on its fore- and mid-tibiae. Michener (2007) proposed a possible derivation of *Euaspis* from a "*Pachyanthidium*-like ancestor" and suggested that morphological similarities between *Euaspis* and *Stelis* were possible convergences due to a shared cleptoparasitic lifestyle.

Our results confirm the close phylogenetic relationship between *Afrostelis, Euaspis*, and *Stelis* and suggest that *Afrostelis* and *Euaspis* may well be derived from within *Stelis*. In this case, both genera may eventually be assigned subgeneric rank within the genus *Stelis*. Given, however, the uncertain phylogenetic position of *Euaspis* and *Afrostelis* with regard to *Stelis*, as well as the unique suite of morphological characters exhibited by each of these taxa, we prefer for the present to recognize three distinct genera, as per Michener (2007).

The taxonomic assignment of *Stelis rozeni* to the genus *Stelis* was described as "provisional" by Griswold and Parker (2003), based on the numerous morphological differences between *S. rozeni* and other members of the genus, the difficulty associated with its assignment to subgenus, and the fact that males of the species were then unknown. A male has subsequently been found; the genitalia are unlike those of *Afrostelis, Euaspis* and other *Stelis* (T. Griswold, personal communication). Our results soundly confirm the affinity of *Stelis rozeni* with the *Stelis* clade; like *Euaspis* and *Afrostelis*, however, *Stelis rozeni* may either be nested within the *Stelis* clade or sister to the rest of the clade. For the moment, we maintain its assignment to the genus *Stelis*, although future clarification of phylogenetic relationships at the base of the *Stelis* clade may eventually support placement in another genus.

Despite the paraphyly of the subgenus Stelis (Heterostelis), all known host associations are with the resin-nesting genus Trachusa: Stelis annulata on Trachusa (Paraanthidium) interrupta (Amiet et al., 2004), Stelis gigantea on Trachusa (Archianthidium) pubescens (suspected association, Warncke, 1992), Stelis hurdi on Trachusa (Trachusomimus) perdita (Thorp, 1966), Stelis anthidioides on Trachusa (Heteranthidium) timberlakei (Timberlake, 1941) and Stelis manni on Trachusa (Ulanthidium) manni (suspected association, Thorp, 1966). Furthermore, both Old and New World members of Stelis (Heterostelis) belong to early-branching clades in the Stelis group where almost all known host associations are with resin-nesting bees. Old World Stelis (Heterostelis) are found in the same clade with Afrostelis, a parasite of Heriades (Taylor, 1965), and Euaspis, a parasite of resin-nesting Megachile (Iwata, 1976). New World Stelis (Heterostelis) are in the same clade as Stelis (Dolichostelis), also parasites of resin-nesting Megachile (Krombein, 1967; Parker et al., 1987). Stelis (Protostelis) signata, sister to the subgenus Stelis (Stelis), also exclusively favors a resin-nesting host, Anthidiellum strigatum (Müller et al., 1997). Given the paraphyly of Stelis (Heterostelis) and the phylogenetic placement of members of this subgenus, as well as the apparent preference of early branching lineages of the Stelis group for resinnesting hosts, the preference of Trachusa as a host in both Old and New World species of Stelis (Heterostelis) most likely reflects an ancestral preference of the *Stelis* group for resin-nesting hosts. A revision of the subgenus *Stelis* (*Heterostelis*) is needed.

Xenostelis polychroma is known from a single female specimen collected on the island of Socotra. Bayesian analyses of combined data place Xenostelis within the subgenus Stelis (Stelis), while maximum likelihood analyses place Xenostelis as sister to the rest of Anthidiini; the latter placement is likely the result of male characters that are unknown and thus uncoded in the morphological matrix. Xenostelis exhibits two apical spines on fore- and midtibiae, as does Stelis; the enlarged tegulae of Xenostelis, however, are similar to those of Afrostelis. Michener (2007) speculates that Xenostelis may in fact be a synonym or a subgenus of Afrostelis. While we can neither confirm nor refute this hypothesis, we believe that Xenostelis is a close relative of the Stelis group. Morphology of the male genitalia, as well as the addition of DNA sequence data, will be fundamental to understanding the phylogenetic placement of Xenostelis.

4.6. Generic level revision of the Anthidium group

The phylogenetic hypothesis presented here not only clarifies evolutionary relationships among anthidiine bees but also serves as a framework on which to base an improved classification of the tribe. While a revision of the generic-level classification of the *Anthodioctes* and *Dianthidium* groups is much-needed, a combination of missing subgenera, particularly in the *Anthodioctes* group, and weak node support prevent us from proposing such a revision in the present paper. We focus instead on a generic level revision of the *Anthidium* group, a monophyletic group for which we have excellent taxon sampling and in which consistently high internal node support allows us to propose a classification system based on a strongly-supported phylogenetic backbone.

A recent paper outlined a series of priority criteria for taxonomic revisions, among them monophyly, clade stability, and phenotypic diagnosability (Vences et al., 2013). We used these criteria as guidelines for a revised classification and considered the following three options for our revision of the *Anthidium* group:

1. Placement of the entire Anthidium group in the genus Anthidium

In this scenario, current genera in the *Anthidium* group would become subgenera of the genus *Anthidium*. This option, however, clearly groups together radically different forms. While Michener (2007) argues that maintaining extremely large, diverse genera such as *Andrena*, *Lasioglossum* and *Megachile* makes it easier for biologists to recognize taxa, other authors prefer to divide such large genera into multiple, smaller genera (e.g. Mitchell (1960), Hurd (1979), Moure and Hurd (1987) for *Lasioglossum*; Mitchell (1980) for *Megachile*; Urban and Moure (2012) for anthidiine genera; and Moure et al. (2012) for paracolletine genera).

2. Maintenance of the genus *Serapista* and placement of other species into the genus *Anthidium*

The four species in the genus *Serapista* are distributed throughout most of sub-Saharan Africa (Michener, 2007). Morphologically, they are dramatically different from other species of wool carder bees, characterized by their dark integument marked by patches of white appressed squamose pubescence. In this classification system, *Serapista* would remain a unique genus, while the remaining species of the *Anthidium* group would be placed in the genus *Anthidium*. This option, however, also creates a hugely diverse genus *Anthidium*, evoking the same issues as the first option.

3. Maintenance of the system proposed by Michener (2007), incorporating changes in light of new phylogenetic results

Michener (2007) divides the Anthidium group into eight genera: Anthidioma, Afranthidium, Anthidium, Gnathanthidium, Indanthidium, Neanthidium, Pseudoanthidium, and Serapista. According to our results, multiple subgenera of Afranthidium and the genera Neanthidium and Gnathanthidium would be moved into the genus Pseudoanthidium. The genera Anthidium and Serapista would remain unchanged. Two genera of uncertain taxonomic affinity, Anthidioma and Indanthidium, would maintain their generic-level status until (and if) future studies suggest otherwise.

A fourth possibility was the system proposed by Pasteels (1969). Pasteels (1969) divided the Old World members of the *Anthidium* group into nineteen genera (and this system only includes the Old World taxa described up until 1969). Although Pasteels' classification proposes genera that are generally supported as monophyletic by our results, it creates large numbers of very small genera that are only minimally different from one another, calling into question their utility. We thus excluded this classification from consideration.

Of the three options considered, only the third option takes an existing classification in widespread use (Michener, 2007) and implements only as many changes as necessary to ensure the monophyly of all genera. The decision to represent taxonomic diversity at the generic level or the sub-generic level is clearly subjective. We prefer the third option because it places species into genera that reflect the diversity of the species therein, without creating large numbers of needlessly small genera. We thus retain the classification system proposed by Michener (2007) and hereby make the following changes.

We move the subgenera Afranthidium (Zosteranthidium), Afranthidium (Branthidium), Afranthidium (Immanthidium) and the genus Neanthidium into the genus Pseudoanthidium. These form the new combinations Pseudoanthidium (Zosteranthidium), P. (Branthidium), *P.* (*Immanthidium*) and *P.* (*Neanthidium*). Interestingly, the genus Afranthidium comes out twice in the key to Old World genera of Anthidiini (Michener and Griswold, 1994b; Michener, 2007). The subgenera that correspond to the second occurrence of Afranthidium in the key are those in which the premarginal zone is not depressed and the punctation of this zone is not finer than the basal zone. These subgenera are here assigned to Pseudoanthidium. Based on the morphological traits associated with our new definition of *Pseudoanthidium* (outlined below), we also include the genus Gnathanthidium and the subgenus Afranthidium (Mesanthidiellum) in Pseudoanthidium. These form the new combinations Pseudoanthidium (Gnathanthidium) and P. (Mesanthidiellum).

The genus Afranthidium, as now defined, thus includes the subgenera Afranthidium, Capanthidium, Domanthidium, Mesanthidium, Nigranthidium, Oranthidium and Xenanthidium. The genus Pseudoanthidium now includes the subgenera Branthidium, Exanthidium, Gnathanthidium, Immanthidium, Mesanthidiellum, Micranthidium, Neanthidium, Pseudoanthidium, Royanthidium, Semicarinella, Tuberanthidium and Zosteranthidium.

With its expanded diversity, 60 described species in twelve subgenera plus numerous undescribed species, it is not surprising that universal characters distinguishing *Pseudoanthidium* from *Afranthidium* are not abundant. Nevertheless, a suite of characters not or rarely found in *Afranthidium*, as here redefined, does exist for *Pseudoanthidium*: punctation of terga similar in diameter and density across the surface, without distinct apical depressed zone; apical margins of terga broadly impunctate (several puncture widths) (except *Royanthidium*); pronotal lobe at least narrowly lamellate (except *Zosteranthidium*, *Immanthidium*; also occurs in *Afranthidium* subgenus *Mesanthidium*); hind tibia tuberculate (except *Micranthidium*, *Immanthidium*, *Pseudoanthidium*, *Royanthidium*, *Exanthidium*, some *Branthidium*); male sixth tergite without lateral spine (except some *Exanthidium*); male seventh tergite emarginate medially (except some *Micranthidium* and *Pseudoanthidium*; also occurs in *Afranthidium* subgenus *Nigranthidium*); male third sternum with modified hairs (except *Royanthidium*, *Mesanthidiellum*, *Gnathanthidium*, *Branthidium*); female clypeal apical margin covered with dense pubescence (except *Micranthidium*, *Zosteranthidium*, *Immanthidium*, *Royanthidium*, *Exanthidium*). As now constituted, *Pseudoanthidium* typically has a blocky head and rather circular metasoma in cross-section.

The newly constrained *Afranthidium* is now recognized by the depressed, densely and more finely punctate apical zone of the terga, the generally more flat metasoma in cross-section, and the presence of a lateral spine on the sixth tergite of the male.

No changes are made to the genera *Serapista*, *Anthidium*, *Anthidioma*, or *Indanthidium*.

4.7. The evolution of morphological characters – implications for classification

Many characters appear in multiple anthidiine genera and subgenera, apparently without phylogenetic pattern. Males from diverse genera, for example, exhibit apical marginal combs on sternites three, four or five. Such combs are present in genera from all five suprageneric anthidiine groups, including members of Trachusa (on S4 and S5, depending on subgenera), Pseudoanthidium (on S5 in Pseudoanthidium (Pseudoanthidium) and P. (Royanthidium)), Pachyanthidium (on S4 and S5), Hypanthidioides (S3 and S5, depending on subgenus), Plesianthidium (S4 and S5, depending on subgenus), Bathanthidium (S4 and S5, depending on subgenus), Dianthidium (S5), Paranthidium (S4, S5 and sometimes S3), Notanthidium (S4), and Stelis (S4); sternal combs are absent in other members of many of these genera, including Trachusa, Pseudoanthidium, Plesianthidium, Dianthidium, Paranthidium, Notanthidium, and Hypanthidioides, and in all Afranthidium, Anthidium, Eoanthidium, Duckeanthidium, Cyphanthidium, Epanthidium, Hypan*thidium* and *Anthodioctes*. The appearance of sternal combs not only varies within genera but also within species: male *Trachusa* (Heteranthidium) occidentalis have been found both with and without combs on the fourth sternum (Brooks and Griswold, 1988).

Other characters that appear in diverse lineages are a strongly carinate or lamellate omaulus, seen in Anthidiellum, Pachyanthidium, Pseudoanthidium (Micranthidium and Gnathanthidium), Anthidium (Severanthidium and Gulanthidium); juxtantennal carinae, seen in most Anthodioctes group genera plus Eoanthidium, Epanthidium, Euaspis and Larinostelis; and a complete or partial preoccipital carina, seen in Afranthidium (Mesanthidiellum), Anthidium (subgenera Severanthidium and Turkanthidium), Aztecanthidium, Anthodi-Afrostelis, Euaspis, Gnathanthidium, Icteranthidium, octes. Pachyanthidium, Plesianthidium (Spinanthidiellum), and various subgenera of Pseudoanthidium and Anthidiellum. Omaular and preoccipital carinae occur sporadically in other bees; omaular carinae are found in members of Colletidae, non-anthidiine Megachilidae and Apidae, while juxtantennal carinae are found in non-anthidiine Megachilidae. These various carinae have likely evolved in parallel and may serve to protect vulnerable areas of the body, such as the neck and antennal bases (Michener, 2007).

Such traits have either evolved multiple times in parallel or are plesiomorphies that have been lost in multiple lineages within the tribe Anthidiini. While potentially useful for the diagnosis of taxonomic groups, they are not appropriate for the character-based definition of groups. The historical use of such characters to define anthidiine taxa may at least partially explain the lack of coherence between our phylogeny and the current classification. We thus strongly recommend the use of a robust, molecular-based phylogenetic backbone for the definition of taxonomic groups, followed by a subsequent decision regarding which morphological characters are appropriate for the diagnosis of these groups.

4.8. Mandibular morphology and nesting behavior

A correlation has long been suggested between nest-building material and anthidiine mandibular dentition (Perez, 1879, 1889; Pasteels, 1977). Female anthidiines building nests of resin, including the *Trachusa, Anthodioctes,* and *Dianthidium* groups, have three or four blunt mandibular teeth separated by shallow concavities that they use to collect chunks of resin. In contrast, female anthidiines using plant fibers in nest construction, such as those in the *Anthidium* group, have five or more sharp teeth separated by V-shaped notches (Michener, 2007).

The theory that mandibles exhibiting many, sharp teeth are adapted to harvesting fibers from plants may be supported by the unusual nesting behavior of some members of the genera *Rhodanthidium* and *Pachyanthidium*, both members of the *Dianthidium* group. The nest cells of *Rhodanthidium* (*Asianthidium*) caturigense are built of two distinct layers: an outer layer woven of plant fibers and an inner layer built of resin (Pasteels, 1977). While most female members of the genus *Rhodanthidium* do not include plant fibers in their nests and exhibit extremely reduced dentition, amounting to little more than a straight margin on the mandible, *R. caturigense* has four distinct mandibular teeth separated by V-shaped notches.

Members of the subgenus *Pachyanthidium* (*Pachyanthidium*) build nest cells of resin mixed together with plant fibers (Michener, 1968; Gueinzius, 1858). While other subgenera of Pachyanthidium exhibit mandibular dentition similar to that of other resin-nesting anthidiines, members of the subgenus Pachyanthidium exhibit mandibular dentition consistent with that of plant fiber-nesting anthidiines. Thus the dentition seen in both R. caturigense and members of the subgenus Pachyanthidium, unique among members of the Dianthidium group and among resin-nesting anthidiines in general, support the theory that mandibles with multiple, sharp teeth are an adaptation for the manipulation of plant fibers. The phylogenetic position of these two species, nested deeply within the Dianthidium group and not closely related to one another, may imply that the combination of including plant fibers in nest construction and mandibles with multiple, sharp teeth are either a convergence shared with members of the Anthidium group, or a plesiomorphy retained from an early common ancestor of the Anthidium, Anthodioctes, and Dianthidium groups.

Acknowledgements

This work was supported by a National Science Foundation grant to B.N. Danforth and T.L. Griswold (DEB-0742998, REVSYS: phylogeny and systematics of the megachilid bees). We thank M. Kuhlmann, C. Monnerat, A. Müller, L. Packer and C. Praz for providing specimens; M. Kuhlmann, L. Packer and C. Praz for helpful correspondence and conversation; and David Genoud and Entomologie/Botanik ETH Zürich for photographs. The authors declare no conflict of interest.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.ympev.2016.03. 018.

References

- Amiet, F., Hermann, M., Müller, A., Neumeyer, R., 2004. Apidae 4. Fauna Helvetica 9. Centre Suisse de Cartographie de la Faune – Schweizerische Entomologische Gesellschaft, Neuchâtel (in French, German).
- Ascher, J.S., Pickering, J., 2015. Discover Life Bee Species Guide and World Checklist (Hymenoptera: Apoidea: Anthophila) <<u>http://www.discoverlife.org/mp/20q?</u> guide=Apoidea_species>.
- Bennett, F.D., 1966. Notes on the biology of Stelis (Odontostelis) bilineolata (Spinola), a parasite of Euglossa cordata. J. N.Y. Entomol. Soc. 74, 72–79.
- Brooks, R.W., Griswold, T.L., 1988. A key to the species of *Trachusa* subgenus *Heteranthidium* with descriptions of new species from Mexico (Hymenoptera: Megachilidae, Anthidiini). J. Kansas Entomol. Soc. 61, 332–346.
- Claude-Joseph, F., 1926. Recherches biologiques sur les Hyménoptères du Chile (Melliferes), Ann. Sci. Nat., Zool. 10, 114–268 (in French).
- Cockerell, T.D.A., 1931. Heriadine and related bees from Liberia and the Belgian Congo. Rev. Zool. Bot. Afr. 20, 331–341.
- Danforth, B.N., Sauquet, H., Packer, L., 1999. Phylogeny of the bee genus *Halictus* (Hymenoptera: Halictidae) based on parsimony and likelihood analyses of nuclear EF-1 alpha sequence data. Mol. Phylogenet, Evol. 13, 605–618.
- Evans, H.E., 1993. Observations on the nests of *Paranthidium jugatorium perpictum* (Cockerell) (Hymenoptera: Megachilidae: Anthidiini). Pan-Pacif. Entomol. 69, 319–322.
- Fabre, J.H., 1891. Souvenirs entomologiques. Quatrième Série. Delagrave, Paris (in French).
- Fabre, J.H., 1914. The Mason-bees. Dodd, Mead and Company, Madison.
- Ferton, C., 1901. Notes détachées sur l'instinct des Hyménoptères mellifères ravisseurs avec la description de quelques espèces (1re série). Ann. Soc. Entomol. France 70, 83–148 (in French).
- Ferton, C., 1911. Notes détachées sur l'instinct des Hyménoptères mellifères ravisseurs avec la description de quelques espèces (7e série). Ann. Soc. Entomol. France 80, 351–412 (in French).
- Gene Codes Corporation, 2015. Sequencher[®] Version 5.3 Sequence Analysis Software. Ann Arbor, MI, USA http://www.genecodes.com>.
- Gess, S.K., Gess, F.W., 2007. Notes on nesting and flower visiting of some anthidiine bees (Hymenoptera: Megachilidae: Megachilinae: Anthidiini) in southern Africa. J. Hymenoptera Res. 16, 30–50.
- Gillespie, J.J., Johnston, J.S., Cannone, J.J., Gutell, R.R., 2006. Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of *Apis mellifera* (Insecta: Hymenoptera): structure, organization, and retrotransposable elements. Insect Mol. Biol. 15 (5), 657–686.
- Gonzalez, V.H., Griswold, T., Praz, C.J., Danforth, B.N., 2012. Phylogeny of the bee family Megachilidae (Hymenoptera: Apoidea) based on adult morphology. Syst. Entomol. 37, 261–286.
- Gonzalez, V.H., Griswold, T.L., 2013. Wool carder bees of the genus *Anthidium* in the Wesyern Hemisphere (Hymenoptera: Megachilidae): diversity, host plant associations, phylogeny, and biogeography. Zool. J. Linn. Soc. 168, 221–425.
- Grandi, G., 1934. Contributi alla conoscenza degli Imenotteri melliferi e predatori XIII. Boll. Lab. Entomol. Reale Istit. Super. Agr. Bologna 7, 1–144 (in Italian).
- Griswold, T.L., Michener, C.D., 1988. Taxonomic observations on Anthidiini of the western hemisphere (Hymenoptera: Megachilidae). J. Kansas Entomol. Soc. 61, 22–45.
- Griswold, T.L., Parker, F.D., 2003. Stelis rozeni, new species, the first record of the parasitic bee genus Stelis from southern Africa (Hymenoptera: Megachilidae). J. Kansas Entomol. Soc. 76, 282–285.
- Gueinzius, W., 1858. On the habits of the hymenoptera of Natal. In: Proceedings of the Entomological Society of London. Transactions of the Entomological Society of London, New Series V, pp. 9–11, 1858–1859, 1858–1861.
- Ho, S.Y.W., Jermiin, L.S., 2004. Tracing the decay of the historical signal in biological sequence data. Syst. Biol. 53 (4), 623–637.
- Huelsenbeck, J.P., Ronquist, F., 2001. MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17, 754–755.
- Hurd, P.D., 1979. Superfamily Apoidea. In: Krombein, K.V., Hurd, P.D., Jr., Smith, D.R., Burks, B.D. (Eds.), Catalog of Hymenoptera in America North of Mexico, vol. 2. Smithsonian Institution Press, Washington, pp. 1741–2209.
- Iwata, K., 1976. Evolution of Instinct: Comparative Ethology of Hymenoptera. Amerind Publishing Co., Pvt. Ltd., New Delhi.
- Jermiin, L.S., Ho, S.Y.W., Ababneh, F., Robinson, J., Larkum, A.W.D., 2004. The biasing effect of compositional heterogeneity on phylogenetic estimates may be underestimated. Syst. Biol. 53 (4), 638–643.
- Katoh, K., Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772– 780.
- Kjer, K.M., 1995. Use of rRNA secondary structure in phylogenetic studies to identify homologous positions: an example of alignment and data presentation from the frogs. Mol. Phylogenet. Evol. 4, 314–330.
- Krombein, K.V., 1967. Trap-nesting Wasps and Bees: Life Histories, Nests, and Associates. Smithsonian Press, Washington D.C.
- Lanfear, R., Calcott, B., Ho, S.Y.W., Guindon, S., 2012. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29 (6), 1695–1701.
- Litman, J.R., Eardley, C.D., Danforth, B.N., Praz, C.J., 2011. Why do leafcutter bees cut leaves? New insights into the early evolution of bees. Proc. R. Soc. B 278, 3593– 3600.

- Litman, J., Praz, C.J., Danforth, B.N., Griswold, T.L., Cardinal, S., 2013. Origins, evolution, and diversification of cleptoparasitic lineages in long-tongued bees. Evolution 67 (10), 2982–2998.
- Maddison, D.R., Maddison, W.P., 2005. Macclade 4.08 for OSX. Sinauer Associates Inc., Sunderland, Massachusetts.
- Maneval, H., 1936. L'Anthidium caturigense, son nid, sa larve. Ann. Soc. Entomol. France 105, 1–5 (in French).
- Micheli, L., 1935. Note biologiche e morphologiche sugli Imenotteri VII. Boll. Soc. Veneziana Storia Nat. 1, 126–134 (in Italian).
- Michener, C.D., 1942. Taxonomic observations on bees with descriptions of new genera and species (Hymenoptera: Apoidea). J. N.Y. Entomol. Soc. 50, 273–282.
- Michener, C.D., 1948. The generic classification of the anthidiine bees. Am. Mus. Nov. 1381, 1–29.
- Michener, C., 1968. Nests of some African megachilid bees, with description of a new *Hoplitis* (Hymenoptera, Apoidea). J. Entomol. Soc. S. Afr. 31, 337–359.
- Michener, C.D., 1979. Biogeography of the bees. Ann. Mo. Bot. Gard. 66 (3), 277-347.
- Michener, C.D., 2000. The Bees of the World. The Johns Hopkins University Press, Baltimore.
- Michener, C.D., 2007. The Bees of the World. The Johns Hopkins University Press, Baltimore.
- Michener, C.D., Griswold, T.L., 1994a. The neotropical *Stelis*-like cleptoparasitic bees (Hymenoptera: Megachilidae). Proc. Entomol. Soc. Wash. 96, 674–678.
- Michener, C.D., Griswold, T.L., 1994b. The classification of old world Anthidiini. Univ. Kansas Sci. Bull. 55, 299–327.
- Miller, M.A., Pfeiffer, W., Schwartz, T., 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), 14 November 2010, New Orleans, LA, pp. 1–8.
- Mitchell, T.B., 1960. Bees of the eastern United States. I. Tech. Bull. (N. Carolina Agric, Experiment Station) 141, 1–538.
- Mitchell, T.B., 1980. A Generic Revision of the Megachiline Bees of the Western Hemisphere. Department of Entomology, North Carolina State University, Raleigh [ii] + 95 pp.
- Moure, J.S., Hurd Jr., P.D., 1987. An Annotated Catalog of the Halictid Bees of the Western Hemisphere. Smithsonian Institution Press, Washington, D.C., vii + 405 pp.
- Moure, J.S., Graf, V., Urban, D., 2012. Paracolletini Cockerell, 1934. In: Moure, J.S., Urban, D., Melo, G.A.R. (Eds.), Catalogue of Bees (Hymenoptera, Apoidea) in the Neotropical Region – Online Version. Available at <<u>http://www.moure.cria.org.</u> br/catalogue>.
- Muller, M., 1931. Zur Biologie unsere Wollbienen (*Anthidium* F.). Z. Wissenschaftliche Insektenbiologie 26, 14–148 (in German).
- Müller, A., 1996. Host-plant specialization in western Palearctic anthidiine bees (Hymenoptera: Apoidea: Megachilidae). Ecol. Monogr. 66, 235–257.
- Müller, A., Krebs, A., Amiet, F., 1997. Bienen. Mitteleuropäische Gattungen, Lebensweise, Beobachtung. Naturbuch-Verlag, Augsburg (in German).
- O'Brien, M.F., 2007. Notes on *Dianthidium simile* (Cresson) (Hymenoptera: Megachilidae) in Michigan. Great Lakes Entomol. 40, 23–28.
- Parker, F.D., Cane, J.H., Frankie, G.W., Vinson, S.B., 1987. Host records and nest entry by *Dolichostelis*, a kleptoparasitic anthidiine bee (Hymenoptera: Megachilidae). Pan-Pacif. Entomol. 63, 172–177.
- Pasteels, J.J., 1969. La systématique générique et subgénérique des Anthidiinae (Hymenoptera, Apoidea, Megachilidae) de l'Ancien Monde. Mémoir. Soc. R. d'Entomol. Belgique 31, 1–148 (in French).
- Pasteels, J.J., 1977. Une revue comparative de l'éthologie des Anthidiinae nidificateurs de l'ancien monde (Hymenoptera, Megachilidae). Ann. Soc. Entomol. France 13, 651–667 (in French).
- Perez, J., 1879. Contribution à la faune des Apiaires de France 2e partie. Actes de la Société Linnéenne de Bordeaux (in French).
- Perez, J., 1889. Les Abeilles. Hachette, Paris (in French).
- Praz, C.J., Packer, L., 2014. Phylogenetic position of the bee genera Ancyla and Tarsalia (Hymenoptera: Apidae): a remarkable base compositional bias and an early Paleogene geodispersal from North America to the Old World. Mol. Phylogenet. Evol. 81, 258–270.
- Rambaut, A., Suchard, M.A., Xie, D., Drummond, A.J., 2014. Tracer v1.6 Available from <<u>http://beast.bio.ed.ac.uk/Tracer></u>.
- Ronquist, F., Huelsenbeck, J.P., 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
- Sheffield, N.C., 2013. The interaction between base compositional heterogeneity and among-site rate variation in models of molecular evolution. ISRN Evol. Biol., 1–8 Article ID 391561
- Stamatakis, A., 2006. Raxml-vi-hpc: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688– 2690.
- Stamatakis, A., 2014. The RAxML v8.1.x Manual. Heidelberg Institute for Theoretical Studies, Heidelberg.
- Swofford, D.L., 2003. PAUP*. Phylogenetic Analysis using Parsimony (* and Other Methods). Version 4.0a144. Sinauer Associates, Sunderland, Massachusetts.
- Taylor, J.S., 1965. Notes on some South African bees (Hymenoptera: Colletidae, Megachilidae). Pan-Pacif. Entomol. 41, 173-179.
- Thomas, J.A., Trueman, J.W.H., Rambaut, A., Welch, J.J., 2013. Relaxed phylogenetics and the Palaeoptera problem: resolving deep ancestral splits in the insect phylogeny. Syst. Biol. 62 (2), 285–297.

Thorp, R.W., 1966. Synopsis of the genus *Heterostelis* Timberlake (Hymenoptera: Megachilidae). J. Kansas Entomol. Soc. 39, 131–146.

- Timberlake, P.H., 1941. Ten new species of *Stelis* from California (Hymenoptera, Apoidea). J. N.Y. Entomol. Soc. 49, 123–137.
 Urban, D., Moure, J.S., 2012. Anthidiini Ashmead, 1899. In: Moure, J.S., Urban, D.,
- Melo, G.A.R. (Eds.), Catalogue of Bees (Hymenoptera, Apoidea) in the Neotropical Region Online Version. Available at <<u>http://www.moure.cria.org.br/catalogue></u>.
- Vences, M., Guayasamin, J.M., Miralles, A., de la Riva, I., 2013. To name or not to name: criteria to promote economy of change in Linnean classification schemes. Zootaxa 3636 (2), 201–244.
- Viereck, H.L., 1924. The Philippine species of *Parevaspis*, a genus of bees. Philippine J. Sci. 24, 745–747.
- Warncke, K., 1980. Die Bienengattung *Anthidium* Fabricius, 1804, in der Westpaläarktis und im turkestanischen Becken. Entomofauna 1 (10), 119–210 (in German).

- Warncke, K., 1992. Die westpaläarktischen Arten der Bienengattung Stelis Panzer, 1806 (Hymenoptera, Apidae, Megachilinae). Entomofauna 13 (22), 341–376 (in German).
- Westrich, P., 1989. Die Wildbienen Baden-Württembergs. Eugen Ulmer GmbH & Co., Stuttgart (in German).
- Woese, C.R., Achenbach, L., Rouviere, P., Mandelco, L., 1991. Archaeal phylogeny: reexamination of the phylogenetic position of *Archaeoglobus fulgidus* in light of certain composition-induced artifacts. Syst. Appl. Microbiol. 1991 (14), 364– 371.
- Xambeu, V., 1896. Moeurs et métamorphoses des Anthidium oblongatum et septemdentatum, Hymenoptères du group des Apides. Bull. Soc. Entomol. France, 328–333 (in French).

Yang, Z., 2006. Computational Molecular Evolution. Oxford University Press, Oxford.

Zanella, F.C.V., Ferreira, A.G., 2005. Registro de hospedeiro de Austrostelis Michener & Griswold (Hymenoptera: Megachilidae) e de sua ocorrência na Caatinga. Neotrop. Entomol. 34 (5), 857–858.